Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Intelligent Machines

Real or Fake? AI Is Making It Very Hard to Know

Thanks to machine learning, it’s becoming easy to generate realistic video, and to impersonate someone.

News headlines might not be the only things that are fake in the future.

Powerful machine-learning techniques (see “The Dark Secret at the Heart of AI”) are making it increasingly easy to manipulate or generate realistic video and audio, and to impersonate anyone you want with amazing accuracy.

A smartphone app called FaceApp, released recently by a company based in Russia, can automatically modify someone’s face to add a smile, add or subtract years, or swap genders. The app can also apply “beautifying” effects that include smoothing out wrinkles and, more controversially, lightening the skin.

And last week a company called Lyrebird, which was spun out of the University of Montreal, demonstrated technology that it says can be used to impersonate another person’s voice. The company posted demonstration clips of Barack Obama, Donald Trump, and Hillary Clinton all endorsing the technology.

These are just two examples of how the most powerful AI algorithms can be used for generating content rather than simply analyzing data.

Powerful graphics hardware and software, as well as new video-capture technologies, are also driving this trend. Last year researchers at Stanford University demonstrated a face-swapping program called Face2Face. This system can manipulate video footage so that a person’s facial expressions match those of someone being tracked using a depth-sensing camera. The result is often eerily realistic.

The ability to manipulate voices and faces so realistically could raise a number of issues, as the creators of Lyrebird acknowledge.

“Voice recordings are currently considered as strong pieces of evidence in our societies and in particular in jurisdictions of many countries,” reads an ethics statement posted to the company’s website. “Our technology questions the validity of such evidence as it allows to easily manipulate audio recordings. This could potentially have dangerous consequences.”

Both FaceApp and Lyrebird use deep generative convolutional networks to enable these tricks. This means the company is applying a technique that has emerged in recent years as a way of getting algorithms to go beyond just learning to classify things and generate plausible data of their own.

Like many tasks in artificial intelligence today, this involves using very large, or deep, neural networks. Such networks are normally fed training data and tweaked so that they respond in the desired way to new input. For example, they can be trained to recognize faces or objects in images with amazing accuracy.

Subscribe to The Download
What's important in technology and innovation, delivered to you every day.
Manage your newsletter preferences

But the same networks can then be made to generate their own data based on what were able to internalize about the data set they were trained on.

It is possible to train such a network to generate images from scratch that look almost like the real thing. In the future, using the same techniques, it may become a lot easier to manipulate video, too. “At some point it’s likely that generating whole videos with neural nets will become possible,” says Alexandre de Brébisson, a cofounder of Lyrebird. “It’s more challenging because there is a lot of variability in the high dimensional space representing videos, and current models for it are still not perfect.”

Given the technologies that are now emerging, it may become increasingly important to be able to detect fake video and audio.

Justus Thies, a doctoral student at Friedrich Alexander University in Germany and one of the researchers behind Face2Face, the real-time face-swapping app, says he has started a project aimed at detecting manipulation of video. “Intermediate results look promising,” he says.

Hear more about machine learning at EmTech MIT 2017.

Register now

Uh oh–you've read all of your free articles for this month.

Insider Premium
$179.95/yr US PRICE

Next in Top Stories

Your guide to what matters today

Want more award-winning journalism? Subscribe to Insider Plus.
  • Insider Plus {! insider.prices.plus !}*

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    What's Included

    Unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Bimonthly print magazine (6 issues per year)

    Bimonthly digital/PDF edition

    Access to the magazine PDF archive—thousands of articles going back to 1899 at your fingertips

    Special interest publications

    Discount to MIT Technology Review events

    Special discounts to select partner offerings

    Ad-free web experience

/
You've read all of your free articles this month. This is your last free article this month. You've read of free articles this month. or  for unlimited online access.