Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Intelligent Machines

Nvidia’s Deep-Learning Chips May Give Medicine a Shot in the Arm

The company sees medicine as the next big market for its machine-learning hardware.

The chip maker Nvidia is riding the current artificial-intelligence boom with hardware designed to power cutting-edge learning algorithms. And the company sees health care and medicine as the next big market for its technology.

Kimberly Powell, who leads Nvidia’s efforts in health care, says the company is working with medical researchers in a range of areas and will look to expand these efforts in coming years.

“There’s this amazing surge in medical imaging research,” Powell said at MIT Technology Review’s EmTech Digital conference in San Francisco on Monday. “More and more we’re visiting providers at hospitals today, and they’re imagining new artificial-intelligence applications.”

Most notably, a machine-learning technique called deep learning is being applied to processing medical images and sifting through large amounts of medical data. Deep learning, which is very loosely inspired by the way neurons in the brain seem to work, has already proved incredibly useful for finding images and processing audio files (see “10 Breakthrough Technologies: Deep Learning”).

This AI technique certainly seems to be gaining acolytes in medical research. Last year a team from Google showed that deep learning can be used to automate the diagnosis of eye disease. Meanwhile, a group from Stanford University published a paper in the journal Nature that showed the technique can spot skin cancer as well as a trained dermatologist. A group from Mount Sinai Hospital in New York used the approach to analyze patients’ electronic health records and predict, with surprisingly high accuracy, what disease a person would go on to develop.

These are just a few high-profile examples. Powell noted during her talk that large medical-imaging conferences have become dominated by deep-learning papers.

The graphics processors made by Nvidia are very well suited to performing the parallel calculations required for deep learning, and the chip maker has already built a sizable business  supplying hardware to deep-learning researchers in academia and industry. Nvidia makes a growing number of specialized deep-learning products, including a powerful research computer called the DGX-1 and a system for self-driving vehicles called the Drive PX.

Powell believes the company’s hardware will increasingly be found in hospitals and medical research centers, too. The approach could help improve the reliability of diagnosis, she said, and might significantly boost standards of care in developing countries, where expertise is scarce. Powell added that drug discovery would likely be another big area for deep learning in the future.

But deep learning might also help doctors find patterns that would otherwise be invisible. Nvidia is, for example, working with Bradley Erickson, a neuro-radiologist at the Mayo Clinic, to apply deep learning to brain images. Erickson has had some success in identifying genetic factors related to brain disease from images, Powell said.

Earlier, at the same event, Gary Marcus, a professor from NYU, singled out medicine as the area in which AI could have its biggest impact. “Think about cancer,” Marcus said. The risk factors that might indicate the likelihood of such a disease may be hard for a person to identify, but they could be uncovered by an algorithm, he said. “The killer app [for AI] might be major advances in how we treat medicine.”

There are, however, significant challenges in applying techniques like deep learning to medicine. The approach is so complex and opaque that it may not be clear to a doctor why an algorithm comes up with a particular diagnosis. Powell acknowledged this challenge but said that solutions, such as new ways of visualizing the behavior of deep-learning networks, were emerging. “It’s a big topic in research right now,” she said.

Hear more about AI from the experts at the EmTech Digital Conference, March 26-27, 2018 in San Francisco.

Learn more and register
More from Intelligent Machines

Artificial intelligence and robots are transforming how we work and live.

Want more award-winning journalism? Subscribe and become an Insider.
  • Insider Plus {! insider.prices.plus !}* Best Value

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    What's Included

    Unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Bimonthly print magazine (6 issues per year)

    Bimonthly digital/PDF edition

    Access to the magazine PDF archive—thousands of articles going back to 1899 at your fingertips

    Special interest publications

    Discount to MIT Technology Review events

    Special discounts to select partner offerings

    Ad-free web experience

  • Insider Basic {! insider.prices.basic !}*

    {! insider.display.menuOptionsLabel !}

    Six issues of our award winning print magazine, unlimited online access plus The Download with the top tech stories delivered daily to your inbox.

    See details+

    What's Included

    Unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Bimonthly print magazine (6 issues per year)

  • Insider Online Only {! insider.prices.online !}*

    {! insider.display.menuOptionsLabel !}

    Unlimited online access including articles and video, plus The Download with the top tech stories delivered daily to your inbox.

    See details+

    What's Included

    Unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

/3
You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.