Skip to Content
Artificial intelligence

The computing power needed to train AI is now rising seven times faster than ever before

An updated analysis from OpenAI shows how dramatically the need for computational resources has increased to reach each new AI breakthrough.
November 11, 2019
Go player Ke Jie plays a match against Google's artificial intelligence program, AlphaGo
Go player Ke Jie plays a match against Google's artificial intelligence program, AlphaGoAP

In 2018, OpenAI found that the amount of computational power used to train the largest AI models had doubled every 3.4 months since 2012.

The San Francisco-based for-profit AI research lab has now added new data to its analysis. This shows how the post-2012 doubling compares with the historic doubling time since the beginning of the field. From 1959 to 2012, the amount of power used doubled every two years, tracking Moore’s Law. This means the resources used today are doubling at a rate seven times faster than before.

Modern Era (2012 to present day) AI compute usage on a linear scale. AlexNet to AlphaGo Zero: A 300,000x increase in compute.
OpenAI

This dramatic increase in the resources needed underscores just how costly the field’s achievements have become. Keep in mind that the above graph shows a logarithmic scale. On a linear scale (below), you can more clearly see how compute usage has increased by 300,000-fold in the last seven years.

The chart also notably does not include some of the most recent breakthroughs, including Google’s large-scale language model BERT, OpenAI’s language model GPT-2,  or DeepMind’s StarCraft II-playing model AlphaStar.

OpenAI
OpenAI

In the past year, more and more researchers have sounded the alarm on the exploding costs of deep learning. In June, an analysis from researchers at the University of Massachusetts, Amherst, showed how these increasing computational costs directly translate into carbon emissions.

In their paper, they also noted how the trend exacerbates the privatization of AI research because it undermines the ability for academic labs to compete with much more resource-rich private ones.

In response to this growing concern, several industry groups have made recommendations. The Allen Institute for Artificial Intelligence, a nonprofit research firm in Seattle, has proposed that researchers always publish the financial and computational costs of training their models along with their performance results, for example.

In its own blog, OpenAI suggested policymakers increase funding to academic researchers to bridge the resource gap between academic and industry labs.

Correction: A previous version of this article incorrectly stated the doubling time today is more than seven times the rate before. The resources used are doubling seven times faster, and the doubling time itself is one-seventh the previous time.

Deep Dive

Artificial intelligence

Sam Altman says helpful agents are poised to become AI’s killer function

Open AI’s CEO says we won’t need new hardware or lots more training data to get there.

An AI startup made a hyperrealistic deepfake of me that’s so good it’s scary

Synthesia's new technology is impressive but raises big questions about a world where we increasingly can’t tell what’s real.

Taking AI to the next level in manufacturing

Reducing data, talent, and organizational barriers to achieve scale.

Is robotics about to have its own ChatGPT moment?

Researchers are using generative AI and other techniques to teach robots new skills—including tasks they could perform in homes.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.