Skip to Content
Artificial intelligence

AI researchers need to stop hiding the climate toll of their work

August 2, 2019
An image of a data center
An image of a data center
An image of a data centerAlexander Heinl/Picture-Alliance/DPA/AP Images

The Allen Institute for Artificial Intelligence (AI2) is proposing a new way to incentivize energy-efficient machine learning.

Exploding footprint: More researchers are sounding the alarm about the growing costs of deep learning. In 2018, OpenAI published a study showing that the computational resources required to train large models was doubling every three to four months. In June, another study found that developing large-scale natural-language processing models, in particular, could produce a shocking carbon footprint.

The trend is driven by the research community’s emphasis on advancing the state of the art—with little regard to costs. While there are leaderboards that celebrate performance breakthroughs, for example, they rarely mention what those incremental improvements cost. Often, linear increases in performance are unlocked through exponential increases in resources. At this rate, one expert predicts, AI could account for as much as one-tenth of the world’s electricity use by 2025.

Rich get richer: These statistics aren’t just concerning from an environmental perspective. They also have implications on the field’s diversity and advancement. The sheer amount of resources needed to produce notable results privileges private over academic AI labs. This could restrict the field’s development to shorter-term projects that are more aligned with corporate incentives rather than longer-term advances that would benefit the public, for example.

Show your work: In a new paper, researchers at the Seattle-based AI2 have proposed a new way to mitigate this trend. They recommend that AI researchers always publish the financial and computational costs of training their models along with their performance results. The authors hope that increasing transparency into what it takes to achieve performance gains will motivate more investment in the development of efficient machine-learning algorithms.

Oren Etzioni, the CEO of AI2 and an author on the paper, also thinks that paper reviewers for publications and conferences should reward those that improve efficiency as much as accuracy. Until people standardize efficiency metrics, it will be difficult to evaluate the importance of such a contribution. “I view reporting these numbers as necessary but not sufficient,” he says.

Why now? Recent years have seen a dramatic escalation in the amount of computing power that corporate research labs are throwing at deep learning. 

But Etzioni hopes the community can be more aware of the trade-offs. Plus, investing in more efficient algorithms could wring more mileage out of available resources and produce other gains. It’s not an either-or thing, he says: “We just want to have a better balance in the field.”

Deep Dive

Artificial intelligence

chasm concept
chasm concept

Artificial intelligence is creating a new colonial world order

An MIT Technology Review series investigates how AI is enriching a powerful few by dispossessing communities that have been dispossessed before.

open sourcing language models concept
open sourcing language models concept

Meta has built a massive new language AI—and it’s giving it away for free

Facebook’s parent company is inviting researchers to pore over and pick apart the flaws in its version of GPT-3

spaceman on a horse generated by DALL-E
spaceman on a horse generated by DALL-E

This horse-riding astronaut is a milestone in AI’s journey to make sense of the world

OpenAI’s latest picture-making AI is amazing—but raises questions about what we mean by intelligence.

labor exploitation concept
labor exploitation concept

How the AI industry profits from catastrophe

As the demand for data labeling exploded, an economic catastrophe turned Venezuela into ground zero for a new model of labor exploitation.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.