Skip to Content
Artificial intelligence

Pricing algorithms can learn to collude with each other to raise prices

February 12, 2019

If you shop on Amazon, an algorithm rather than a human probably set the price of the service or item you bought. Pricing algorithms have become ubiquitous in online retail as automated systems have grown increasingly affordable and easy to implement. But while companies like airlines and hotels have long used machines to set their prices, pricing systems have evolved. They have moved from rule-based programs to reinforcement-learning ones, where the logic of deciding a product’s price is no longer within a human’s control.

If you recall, reinforcement learning is a subset of machine learning that uses penalties and rewards to incentivize an AI agent toward a specific goal. AlphaGo famously used it to beat the best human players at the ancient board game Go. Within a pricing context, these systems are given a goal such as to maximize overall profit; then they experiment with different strategies in a simulated environment to find the optimal one. A new paper now suggests that these systems could pose a huge problem: they quickly learn to collude.

Researchers at the University of Bologna in Italy created two simple reinforcement-learning-based pricing algorithms and set them loose in a controlled environment. They discovered that the two completely autonomous algorithms learned to respond to one another’s behavior and quickly pulled the price of goods above where it would have been had either operated alone.

“What is most worrying is that the algorithms leave no trace of concerted action,” the researchers wrote. “They learn to collude purely by trial and error, with no prior knowledge of the environment in which they operate, without communicating with one another, and without being specifically designed or instructed to collude.” This risks driving up the price of goods and ultimately harming consumers.

This originally appeared in our AI newsletter The Algorithm. To have it directly delivered to your inbox, sign up here for free.

Deep Dive

Artificial intelligence

open sourcing language models concept
open sourcing language models concept

Meta has built a massive new language AI—and it’s giving it away for free

Facebook’s parent company is inviting researchers to pore over and pick apart the flaws in its version of GPT-3

images created by Google Imagen
images created by Google Imagen

The dark secret behind those cute AI-generated animal images

Google Brain has revealed its own image-making AI, called Imagen. But don't expect to see anything that isn't wholesome.

Yann LeCun
Yann LeCun

Yann LeCun has a bold new vision for the future of AI

One of the godfathers of deep learning pulls together old ideas to sketch out a fresh path for AI, but raises as many questions as he answers.

AGI is just chatter for now concept
AGI is just chatter for now concept

The hype around DeepMind’s new AI model misses what’s actually cool about it

Some worry that the chatter about these tools is doing the whole field a disservice.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at with a list of newsletters you’d like to receive.