We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not a subscriber? Subscribe now for unlimited access to online articles.

  • Pixabay
  • Business Impact

    A new kind of metasurface uses the sun to clear foggy screens

    Misted windshields could become a thing of the past thanks to a clever material engineered on a microscopic scale.

    When a pair of spectacles fog up, it can be nuisance. But when a car windshield or an astronaut’s helmet fogs, the consequences can be fatal. That’s why cars and space suits have their own air-conditioning systems to remove or prevent fogging.

    But air-conditioning is expensive, bulky, and environmentally unfriendly. So engineers and materials scientists are keen to find a way to prevent fogging more effectively.

    Enter Christopher Walker and colleagues from ETH in Zurich, Switzerland, who have designed a new material with properties unlike anything found in the natural world. Their material—or metasurface, to give it its proper name—captures radiation from the sun and uses it to burn off any condensation or prevent it from forming in the first place. The result is an effective and relatively cheap way of tackling this insidious problem.

    A metasurface is a material engineered to have surface properties that are not found in nature. They are often created using a repeating pattern of smaller units, such as nanoparticles.

    In this case, the team create their surface by covering a silica sheet with gold nanoparticles and sealing them in place with a layer of titanium dioxide. They then repeated this process to create multiple layers.  

    Sign up for The Download
    Your daily dose of what's up in emerging technology

    The nanoparticles absorb some of the sunlight that hits them, giving the glass a tint. But they also heat up, raising the surface temperature of the glass by up to 10 °C.

    That’s the key to preventing fogging. The heat either prevents water from condensing or causes any water to evaporate.

    An important question is whether this approach outperforms conventional anti-fogging technologies. The most common of these is to coat glass in a superhydrophilic or superhydrophobic material. These do nothing to prevent condensation, but they do change the size and behavior of the water droplets that form, often creating a continuous thin layer of water on the surface.

    To find out how the metasurface compares, the team pitted it against an untreated surface and ones coated in superhydrophilic and superhydrophobic materials.

    The results are persuasive. The researchers say their new metasurface significantly reduces the rate of condensation and increases the rate of evaporation compared with other materials.

    And because the gold nanoparticles are protected by a titanium oxide layer, these surfaces are robust, too. “We believe this research will lead to more robust and enhanced passive antifogging and defogging surfaces,” they say.

    That’s interesting work. The new metasurface is relatively easy to make, opening the way to large-scale manufacture on a wide range of materials such as glass and polymers. “This approach would result in considerable performance gains for applications such as windows, windshields, electronic displays, cameras, mirrors, and eyewear,” they say.

    Of course, the material exploits sunlight, which raises the question of how it might work at night. The surface can still be wiped or cleared with fresh air. But the metasurface raises the possibility of other mechanisms, such as an artificial source of illumination. In the future, anti-fogging might as easy as switching on a light.

    Ref: arxiv.org/abs/1904.02534 : Transparent Metasurfaces Counteracting Fogging by Harnessing Sunlight

    Keep up with the latest in climate change at EmTech MIT.
    Discover where tech, business, and culture converge.

    September 17-19, 2019
    MIT Media Lab

    Register now
    More from Business Impact

    How technology advances are changing the economy and providing new opportunities in many industries.

    Want more award-winning journalism? Subscribe to Print + All Access Digital.
    • Print + All Access Digital {! insider.prices.print_digital !}*

      {! insider.display.menuOptionsLabel !}

      The best of MIT Technology Review in print and online, plus unlimited access to our online archive, an ad-free web experience, discounts to MIT Technology Review events, and The Download delivered to your email in-box each weekday.

      See details+

      12-month subscription

      Unlimited access to all our daily online news and feature stories

      6 bi-monthly issues of print + digital magazine

      10% discount to MIT Technology Review events

      Access to entire PDF magazine archive dating back to 1899

      Ad-free website experience

      The Download: newsletter delivery each weekday to your inbox

      The MIT Technology Review App

    You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.