Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

  • Nanoscale diamond needles pushed down by a diamond tip can bend as much as 9 percent and return to their original shape.
  • Courtesy of the researchers
  • Flexible diamonds

    Brittle material is bendable in tiny needle form.

    Diamond is well known to be the strongest of all natural materials, but that strength comes at a price: brittleness. So an international team of researchers from MIT, Hong Kong, Singapore, and Korea was surprised to discover that when grown in extremely tiny, needle--like shapes, diamond can bend and stretch, much like rubber, and snap back to its original shape.

    The team showed that narrow diamond needles, similar in shape to the rubber tips on the end of some toothbrushes but just a few hundred nanometers across, could flex and stretch by as much as 9 percent without breaking and then return to their original configuration. Ordinary diamond in macroscopic form stretches much less than 1 percent.

    Putting crystalline materials such as diamond under very large elastic strains, as happens when these pieces flex, can change their mechanical, thermal, optical, magnetic, electrical, electronic, and chemical reaction properties in significant ways. The process could be used to design materials for specific applications through what’s known as “elastic strain engineering,” the team says.

    This story is part of the July/August 2018 Issue of the MIT News magazine
    See the rest of the issue
    Subscribe

    The diamond needles, which were grown through a chemical vapor deposition process and then etched to their final shape, were observed in a scanning electron microscope while being pressed with a standard diamond-tip “nanoindenter.” The team also did simulations to interpret the results and was able to determine precisely how much stress and strain the needles could accommodate.

    The unexpected find was reported this year in Science by senior author Ming Dao, a principal research scientist in MIT’s Department of Materials Science and Engineering. He says the results could open the door to a variety of diamond-based devices for applications such as sensing, data storage, actuation, biocompatible in vivo imaging, optoelectronics, and drug delivery. For example, diamond has been explored for delivering drugs into cancer cells, and if the tips are flexible, they could be more resistant to breakage. 

    AI is here.
    Own what happens next at EmTech Digital 2019.

    Register now
    Next in MIT News
    Want more award-winning journalism? Subscribe to Insider Online Only.
    • Insider Online Only {! insider.prices.online !}*

      {! insider.display.menuOptionsLabel !}

      Unlimited online access including articles and video, plus The Download with the top tech stories delivered daily to your inbox.

      See details+

      Unlimited online access including all articles, multimedia, and more

      The Download newsletter with top tech stories delivered daily to your inbox

    /3
    You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.