Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

  • Ms. Tech
  • Intelligent Machines

    AI program gets really good at navigation by developing a brain-like GPS system

    DeepMind’s neural networks mimic the grid cells found in human brains that help us know where we are.

    An AI program trained to navigate through a virtual maze has unexpectedly developed an architecture that resembles the neural “GPS system” found inside a brain. The AI was then able to find its way around the maze with unprecedented skill.

    The discovery comes from DeepMind, a UK company owned by Alphabet and dedicated to advancing general artificial intelligence.

    The work, published in the journal Nature, hints at how artificial neural networks, which are themselves inspired by biology, might be used to explore aspects of the brain that remain mysterious. But this idea should be treated with some caution, since there is much we do not know about how the brain works, and since the functioning of artificial neural networks is also often hard to explain.

    Grid-like cells seen in biological and artificial neural networks.
    DeepMind blog

    Researchers at DeepMind set out to train an artificial neural network to mimic path integration, a method animals use to calculate their movement through a space. The researchers trained a neural network with a feedback loop to navigate a maze by feeding it examples of the routes taken by mice traversing a real maze.

    The team found that the neural network developed something similar to the “grid cells” found in a biological brain. These cells, arranged in a triangular grid, seem to provide a way for an animal to position itself in physical space. Grid cells were first identified in 2005, and the scientists who found them were awarded a Nobel Prize for their discovery in 2014.

    The DeepMind researchers used the trained network to navigate through unfamiliar mazes by adding reinforcement learning to their approach. They found that the newly trained network could navigate far more effectively than any previous AI system, and that it explored its space more like a real animal.

    Neural networks can be used to do many useful things, but until now they have not proved especially good at navigation.

    DeepMind's artificial neural network was trained to explore a virtual maze.

    “This study is a compelling demonstration that deep learning can be of value for tasks that depend not just on perceptual abilities but also on higher cognitive functions—in this case, spatial navigation,” says Francesco Savelli, a neuroscientist at Johns Hopkins University who studies grid cells, and who wrote about the research in a related Nature paper.

    The research suggests that grid cells  play a fundamental role in how animals—including humans—find their way around the world. This discovery might eventually have significant practical benefits, like helping robots navigate through unfamiliar buildings more easily.

    “Our work is building artificial general intelligence, and we think navigation is a fundamental piece of that,” says Andrea Banino, one of the DeepMind team members.

    His colleague Dharshan Kumaran says the next step is to get the AI agents to learn more complex navigation skills. “We are thinking of more challenging environments,” he says.

    DeepMind has previously demonstrated some remarkable progress in machine learning, including programs capable of learning how to play video games, as well as board games like Go and chess, with superhuman skill. These achievements also relied on training very large, or deep, artificial neural networks.

    According to Demis Hassabis, cofounder and CEO of DeepMind, AI research may reveal new thing about the brain. “The human brain is the only existence proof we have that the sort of general intelligence we’re trying to build is even possible,” he said in statement. “We believe that this inspiration should be a two-way street, with insights also flowing back from AI research to shed light on open questions in neuroscience.”

    It isn’t clear, however, how far neural networks, which are very simplified representations of biology, will take us in explaining the brain. Several neuroscientists contacted by MIT Technology Review note that the workings of a deep neural network aren’t that much more interpretable than the functioning of a biological brain.

    Become an MIT Technology Review Insider for in-depth analysis and unparalleled perspective.

    Subscribe today
    Grid-like cells seen in biological and artificial neural networks.
    DeepMind blog
    More from Intelligent Machines

    Artificial intelligence and robots are transforming how we work and live.

    Want more award-winning journalism? Subscribe and become an Insider.
    • Insider Plus {! insider.prices.plus !}* Best Value

      {! insider.display.menuOptionsLabel !}

      Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

      See details+

      Print + Digital Magazine (6 bi-monthly issues)

      Unlimited online access including all articles, multimedia, and more

      The Download newsletter with top tech stories delivered daily to your inbox

      Technology Review PDF magazine archive, including articles, images, and covers dating back to 1899

      10% Discount to MIT Technology Review events and MIT Press

      Ad-free website experience

    • Insider Basic {! insider.prices.basic !}*

      {! insider.display.menuOptionsLabel !}

      Six issues of our award winning print magazine, unlimited online access plus The Download with the top tech stories delivered daily to your inbox.

      See details+

      Print Magazine (6 bi-monthly issues)

      Unlimited online access including all articles, multimedia, and more

      The Download newsletter with top tech stories delivered daily to your inbox

    • Insider Online Only {! insider.prices.online !}*

      {! insider.display.menuOptionsLabel !}

      Unlimited online access including articles and video, plus The Download with the top tech stories delivered daily to your inbox.

      See details+

      Unlimited online access including all articles, multimedia, and more

      The Download newsletter with top tech stories delivered daily to your inbox

    /3
    You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.