Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Rewriting Life

Tiny Glue Guns to Patch Surgical Holes

Glue made of nanoparticles, delivered by a needle, can be a better replacement for sutures and surgical staples.

Surgical glue has been shown to produce better outcomes than sutures—less chronic pain, faster healing.

You’re in the ER with appendicitis. Surgeons can remove your appendix through a few three-fourth-inch openings, but the bulky sutures and staples they use to close internal incisions are difficult and time-consuming to manipulate. One day it may be possible to patch you up faster and more easily using glue made of nanoparticles, which can be injected through a needle for use in minimally invasive surgeries and eye surgery.

The nanoglue can be injected through a fine needle, as postdoctoral researcher Yuhan Lee demonstrates.

“In our previous work we’ve been developing tissue-adhesive glues and patches,” says Jeff Karp of Harvard Medical School and Brigham and Women’s Hospital, who is the senior author on a paper describing the glue in Advanced Healthcare Materials. “The challenge moving forward is: how do you deliver these materials?”

In order to inject the glue through a whisker-thin needle without clogging it, the researchers developed a way to make it in the form of nanoparticles, which solidified and formed a seal when a second chemical was injected. The glue can be delivered more quickly and with a smaller instrument than those needed to place sutures or staples, and its elastic properties better match those of the tissue around it. “It’s similar to a rubber band that you can stretch over and over again, except this is fully degradable,” says Karp.

Karp says the nanoparticle delivery mechanism could be adapted to other glues that have been developed recently to use in surgeries, including a cardiac glue his lab developed earlier. Though promising, none of these other glues have yet solved the delivery problem for minimally invasive surgery.

So far, the researchers have tested the glue in a cow eye and a living mouse’s ear. They plan to continue testing in rabbits and rats, and if successful, they will move to clinical testing in humans. They are also interested in developing different triggers to make the glue cure—different chemicals, light, or heat—so that it can be deployed exactly when and where a surgeon wants. 

Want to go ad free? No ad blockers needed.

Become an Insider
Already an Insider? Log in.

Uh oh–you've read all of your free articles for this month.

Insider Premium
$179.95/yr US PRICE

More from Rewriting Life

Reprogramming our bodies to make us healthier.

Want more award-winning journalism? Subscribe to Insider Plus.
  • Insider Plus {! insider.prices.plus !}*

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    What's Included

    Unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Bimonthly print magazine (6 issues per year)

    Bimonthly digital/PDF edition

    Access to the magazine PDF archive—thousands of articles going back to 1899 at your fingertips

    Special interest publications

    Discount to MIT Technology Review events

    Special discounts to select partner offerings

    Ad-free web experience

/
You've read all of your free articles this month. This is your last free article this month. You've read of free articles this month. or  for unlimited online access.