Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Sustainable Energy

A Faster and More Efficient Way to Convert Carbon Dioxide into Fuel

New catalysts turn carbon dioxide into fuels faster and more efficiently.

Reusing carbon dioxide emitted by power plants could reduce fossil-fuel consumption.

Making carbon dioxide by burning hydrocarbons is easy. A pair of novel catalysts recently made by researchers at the University of Illinois at Chicago could make it far more practical to do the reverse, converting carbon dioxide and water into fuel.

Because running this reaction normally requires large amounts of energy, it has been economical only in rare cases (see “Company Makes CO2 into Liquid Fuel, with Help from a Volcano”). But if the process could be done commercially, liquid fuels could be made from the exhaust gases of fossil-fuel power plants.

The new work, described this week in the journal Nature Communications, improves on a pair of catalysts discovered last year that more efficiently turn carbon dioxide into carbon monoxide, which can then be made into gasoline and other products. Those catalysts produce carbon monoxide slowly, however, and one is made of silver, so it’s expensive. But the Illinois researchers have demonstrated that it’s possible to replace the silver with relatively inexpensive carbon fibers while maintaining about the same efficiency. And the technique produces carbon monoxide about 10 times faster.

The work is still in early stages, says Amin Salehi-Khojin, a professor of mechanical engineering at the University of Illinois at Chicago, who led the work. Salehi-Khojin says it will be necessary to produce larger amounts of the catalysts and find a way to incorporate them into a membrane that helps keep them stable over long periods of time—development work that will require industrial partners.

Salehi-Khojin says it may be possible to incorporate the catalysts into an “artificial leaf.” Right now, if the process were to run on sunlight, it would require at least two pieces of equipment: a solar panel to generate electricity, and then a reactor to form the carbon monoxide. A leaf-inspired system would absorb energy from the sun and use it to drive the chemical reactions directly, rather than making electricity first (see “A Greener ‘Artificial Leaf,’” “Sun Catalytix Seeks Second Act with Flow Battery,” and “Artificial Photosynthesis Effort Takes Root”). This approach would make the process more economical.

Be the leader your company needs. Implement ethical AI.
Join us at EmTech Digital 2019.

Register now
More from Sustainable Energy

Can we sustainably provide food, water, and energy to a growing population during a climate crisis?

Want more award-winning journalism? Subscribe to Insider Plus.
  • Insider Plus {! insider.prices.plus !}*

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    Print + Digital Magazine (6 bi-monthly issues)

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

    Technology Review PDF magazine archive, including articles, images, and covers dating back to 1899

    10% Discount to MIT Technology Review events and MIT Press

    Ad-free website experience

/3
You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.