We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Sustainable Energy

Cheaper Ways to Capture Carbon Dioxide

Techniques developed at MIT and Pacific Northwest National Lab could make it more affordable to burn fossil fuels without releasing carbon dioxide to the atmosphere.

Existing technology used to isolate carbon dioxide from the environment is too expensive for widespread use.

Capturing carbon dioxide from smokestacks and then storing it underground could make it possible to continue using fossil fuels without making such a large contribution to global warming. But the current method of capturing the carbon dioxide requires a lot of energy—it can lower the output of a power plant by a third and nearly double the cost of electricity.

carbon capture lab setup at MIT
Carbon lab: The purple fluid in this lab setup at MIT absorbs carbon dioxide. Then it’s pumped into a battery-like device that strips off the carbon dioxide so that it can absorb more.

Two novel approaches—one developed at MIT and the other at the Pacific Northwest National Laboratory—could lower these costs by up to half. Both provide a low-energy way to trigger the material that captures the carbon dioxide to release the gas so that it can be stored. Then the material can be reused. The MIT process uses electrochemical reactions, instead of the steam used now, to trigger the carbon dioxide release. The other uses a solvent that can be triggered to release carbon dioxide by mixing in certain chemicals. Papers describing the approaches have just been posted online by the journal Energy and Environmental Science.

Existing carbon capture technology has not been widely deployed because it is expensive (see “Grasping for Ways to Capture Carbon Dioxide on the Cheap” and “Will Carbon Capture Be Ready on Time?”). In the conventional approach, the gases in power plant exhaust are separated using a solution containing amines that selectively bind carbon dioxide. The amines will release the carbon dioxide if they’re heated up, but this requires a large amount of energy, which would come from steam that could otherwise be used to generate power.

Researchers at MIT developed a way to get the amine solution to release carbon dioxide without heating it. They run it through a device that resembles a battery—it contains positive and negative electrodes made of copper. But instead of producing power, it uses electricity to regenerate amines (see “Fuel Cells Could Offer Cheap Carbon Dioxide Storage”).

Once a solution of amines has absorbed carbon dioxide, it’s pumped to one electrode. Electricity applied to that electrode produces copper ions. The copper ions bind more strongly to the amines than the carbon dioxide does, displacing the carbon dioxide and causing it to bubble off. The copper-amine solution is then pumped to the opposite electrode, where the copper is removed. The amines can then be used to capture more carbon dioxide.

After small-scale tests, the researchers calculated that the process would use far less energy than a conventional system added to an existing power plant—45 kilojoules per mole, compared with 77 kilojoules per mole for the conventional system. The process would also be far easier to implement in existing power plants. The conventional process would require a plant to be extensively restructured with new steam handling equipment and steam turbines, since it gets its heat from the steam. The new system doesn’t require this equipment because it gets its energy from electricity, reducing capital costs.

The system developed at the Pacific Northwest National Laboratory uses an organic solvent to absorb carbon dioxide. To release it, the solvent is mixed with a hydrocarbon, such as hexane, at slightly elevated temperatures. The amount of heat needed is so small that it wouldn’t require diverting steam within a power plant, which makes the process attractive for retrofits. Cooling down the mixture of hydrocarbon and solvent a little causes them to separate, allowing the solvent to be used to capture more carbon dioxide.

Both approaches are at an early stage, having only been demonstrated at a small scale in the lab. Howard Herzog, one of the MIT researchers, says that while the MIT system could be a significant improvement over conventional approaches, “further development is needed to scale up the technology and integrate it with real industrial processes.” PNNL is starting a project to build a larger system in the lab for testing.

Want to go ad free? No ad blockers needed.

Become an Insider
Already an Insider? Log in.
More from Sustainable Energy

Can we sustainably provide food, water, and energy to a growing population during a climate crisis?

Want more award-winning journalism? Subscribe to Insider Plus.
  • Insider Plus {! insider.prices.plus !}*

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    Print + Digital Magazine (6 bi-monthly issues)

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

    Technology Review PDF magazine archive, including articles, images, and covers dating back to 1899

    10% Discount to MIT Technology Review events and MIT Press

    Ad-free website experience

You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.