Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Emerging Technology from the arXiv

A View from Emerging Technology from the arXiv

Mathematics of Eternity Prove The Universe Must Have Had A Beginning

Cosmologists use the mathematical properties of eternity to show that although universe may last forever, it must have had a beginning

  • April 24, 2012

The Big Bang has become part of popular culture since the phrase was coined by the maverick physicist Fred Hoyle in the 1940s. That’s hardly surprising for an event that represents the ultimate birth of everything.

However, Hoyle much preferred a different model of the cosmos: a steady state universe with no beginning or end, that stretches infinitely into the past and the future. That idea never really took off.

In recent years, however, cosmologists have begun to study a number of new ideas that have similar properties. Curiously, these ideas are not necessarily at odds with the notion of a Big Bang.

For instance, one idea is that the universe is cyclical with big bangs followed by big crunches followed by big bangs in an infinite cycle. 

Another is the notion of eternal inflation in which different parts of the universe expand and contract at different rates. These regions can be thought of as different universes in a giant multiverse. 

So although we seem to live in an inflating cosmos,  other universes may be very different. And while our universe may look as if it has a beginning, the multiverse need not have a beginning.

Then there is the idea of an emergent universe which exists as a kind of seed for eternity and then suddenly expands. 

So these modern cosmologies suggest that the observational evidence of an expanding universe is consistent with a cosmos with no beginning or end. That may be set to change.

Today, Audrey Mithani and Alexander Vilenkin at Tufts University in Massachusetts say that these models are mathematically incompatible with an eternal past. Indeed, their analysis suggests that these three models of the universe must have had a beginning too.

Their argument focuses on the mathematical properties of eternity–a universe with no beginning and no end. Such a universe must contain trajectories that stretch infinitely into the past. 

However, Mithani and Vilenkin point to a proof dating from 2003 that these kind of past trajectories cannot be infinite if they are part of a universe that expands in a specific way. 

They go on to show that cyclical universes and universes of eternal inflation both expand in this way. So they cannot be eternal in the past and must therefore have had a beginning. “Although inflation may be eternal in the future, it cannot be extended indefinitely to the past,” they say.

They treat the emergent model of the universe differently, showing that although it may seem stable from a classical point of view, it is unstable from a quantum mechanical point of view. “A simple emergent universe model…cannot escape quantum collapse,” they say.

The conclusion is inescapable. “None of these scenarios can actually be past-eternal,” say Mithani and Vilenkin. 

Since the observational evidence is that our universe is expanding, then it must also have been born in the past. A profound conclusion (albeit the same one that lead to the idea of the big bang in the first place).  

Ref: arxiv.org/abs/1204.4658: Did The Universe Have A Beginning?

The latest Insider Conversation is live! Listen to the story behind the story.

Subscribe today
Already a Premium subscriber? Log in.

Uh oh–you've read all of your free articles for this month.

Insider Premium
$179.95/yr US PRICE

Want more award-winning journalism? Subscribe and become an Insider.
  • Insider Premium {! insider.prices.premium !}*

    {! insider.display.menuOptionsLabel !}

    Our award winning magazine, unlimited access to our story archive, special discounts to MIT Technology Review Events, and exclusive content.

    See details+

    What's Included

    Bimonthly magazine delivery and unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Access to the magazine PDF archive—thousands of articles going back to 1899 at your fingertips

    Special discounts to select partner offerings

    Discount to MIT Technology Review events

    Ad-free web experience

    First Look: exclusive early access to important stories, before they’re available to anyone else

    Insider Conversations: listen in on in-depth calls between our editors and today’s thought leaders

  • Insider Plus {! insider.prices.plus !}* Best Value

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus ad-free web experience, select discounts to partner offerings and MIT Technology Review events

    See details+

    What's Included

    Bimonthly magazine delivery and unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Access to the magazine PDF archive—thousands of articles going back to 1899 at your fingertips

    Special discounts to select partner offerings

    Discount to MIT Technology Review events

    Ad-free web experience

  • Insider Basic {! insider.prices.basic !}*

    {! insider.display.menuOptionsLabel !}

    Six issues of our award winning magazine and daily delivery of The Download, our newsletter of what’s important in technology and innovation.

    See details+

    What's Included

    Bimonthly magazine delivery and unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

/
You've read all of your free articles this month. This is your last free article this month. You've read of free articles this month. or  for unlimited online access.