Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not a subscriber? Subscribe now for unlimited access to online articles.

Do-It-Yourself Solar

Technology could ­harness plant waste to make photovoltaic cells

  • by David L. Chandler
  • February 21, 2012
  • Popeye power: Andreas Mershin has simplified a process developed by Shuguang Zhang for making solar cells using any plant material.

Today, most solar cells are manufactured in high-tech facilities with hospital-­like clean rooms. But within a few years, people in remote villages in the developing world could be making their own photovoltaic cells at home, using crop waste.

That’s the vision of Andreas Mershin, a researcher at the MIT Center for Bits and Atoms, building on a project begun eight years ago by Shuguang Zhang, a principal research scientist at the MIT Center for Biomedical Engineering. Mershin says that within a few years a villager in a remote, off-grid location could take a bag of inexpensive chemicals developed by his team, “mix it with anything green, and paint it on the roof” to start producing power to charge cell phones or lanterns.

Zhang’s original work used photosystem-I (PS-I) complexes, the tiny structures within plant cells that carry out photosynthesis. He and his team extracted the PS-I complexes from spinach by pulverizing the leaves in a blender, stabilized the structures chemically, and deposited them in a layer on a glass substrate that could—like a conventional solar cell—produce an electric current when exposed to light. But creating such solar cells required expensive chemicals and equipment, and the devices were very inefficient.

This story is part of the March/April 2012 Issue of the MIT News magazine
See the rest of the issue
Subscribe

Now Mershin says the process has been simplified enough to be replicated in virtually any lab, letting researchers around the world improve upon it. The new system, which converts 0.1 percent of light’s energy to electricity, is 10,000 times more efficient than the previous version but still needs to improve another tenfold to become useful, he says.

The key to the improved efficiency, ­Mershin explains, was finding a way to expose much more of the PS-I surface area to the sun. He made a tiny forest of zinc oxide nanowires, which serves as a supporting structure for the light-harvesting material. “You can use anything green, even grass clippings,” he says. The nanowires also carry the flow of electrons generated by the PS-I complexes. “It’s like an electric forest,” he says.

The new process “can be very dirty and it still works, because of the way nature has designed it,” says Mershin. “Nature works in dirty environments—it’s the result of billions of experiments over billions of years.”

Blockchain is changing how the world does business, whether you’re ready or not. Learn from the experts at Business of Blockchain 2019.

Register now
Next in MIT News
Want more award-winning journalism? Subscribe to Print + All Access Digital.
  • Print + All Access Digital {! insider.prices.print_digital !}*

    {! insider.display.menuOptionsLabel !}

    The best of MIT Technology Review in print and online, plus unlimited access to our online archive, an ad-free web experience, discounts to MIT Technology Review events, and The Download delivered to your email in-box each weekday.

    See details+

    12-month subscription

    Unlimited access to all our daily online news and feature stories

    6 bi-monthly issues of print + digital magazine

    10% discount to MIT Technology Review events

    Access to entire PDF magazine archive dating back to 1899

    Ad-free website experience

    The Download: newsletter delivered daily

/3
You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.

MIT News = for alumni only.

Are you an MIT alum?
Sign in now to read all MIT alumni news and class notes— or to manage your magazine subscription.

Sign in and read on