We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Sustainable Energy

Carmakers Unveil New Types of Hybrids

Alternative approaches replace the battery with compressed air or a flywheel.

Hybrid cars normally combine conventional engines with battery-powered electric motors. But many carmakers are developing alternative types of hybrids—some of which were on display this month at the Frankfurt Motor Show in Germany.

Lean machine: The Jaguar XF will use a flywheel hybrid system.

Hybrid systems recover kinetic energy—from the engine or from the vehicle itself—and use it to boost the efficiency of the engine. A typical hybrid car does this by charging up a battery.

Scuderi, based in West Springfield, Massachusetts, has altered the way the internal combustion engine operates to convert kinetic energy into the potential energy of high-pressure air. It splits the four parts of the internal combustion cycle across two cylinders synchronized on the same crankshaft. One cylinder handles the air intake and compression part of the cycle, pumping compressed air via a crossover passage into the second cylinder. The crossover contains the fuel-injection system, and combustion and exhaust are handled in the second cylinder.

When the vehicle does not need power—when traveling downhill, braking, or decelerating—the second cylinder is disabled and the first cylinder’s air is diverted into a high-pressure air-storage tank. This air can be used to help run the engine, boosting its efficiency.

Recently, Scuderi has combined this system with a “Miller-cycle” turbocharger, which picks up energy off the exhaust and uses it to compress air into the intake cylinder. This allows the compression side to be shrunk down and reduces the amount of work done through the crankshaft. “The engine is producing much higher output at higher efficiency, we’re producing less emissions, and our torque level is very high,” said Scuderi group president Sal Scuderi at the Frankfurt show. “Our gasoline engine will rival the torque of any diesel engine on the market, but it does that while maintaining low pressure inside the cylinders, which reduces wear and tear.”

Scuderi has now released results of a computer simulation of its engine against a European economy-class engine of comparable power. The air hybrid achieved a fuel economy figure of 65 miles per gallon, compared with 52 miles per gallon for the conventional engine. It also emitted 85 grams per kilometer of carbon dioxide, compared with 104 grams per kilometer for the conventional engine.

Across the Atlantic, a team that formerly worked for the Renault Formula 1 team has adapted its motorsport-developed flywheel system for use with conventional vehicles. The team has formed a company, Flybrid Systems, to commercialize the technology, and has teamed up with Jaguar Land Rover to trial the Flybrid technology that was originally developed as the kinetic energy recovery system (KERS) used in Formula 1 racing to provide a boost during racing. But while most KERS systems work by using a flywheel to charge an onboard battery or supercapacitor, Flybrid uses a gearbox system to transfer kinetic energy directly to and from the wheels.

Flybrid cars transfer energy via either a continuously variable transmission or a less complex three-gear system, which allows 15 different gear ratios on a standard five-gear model. “There are always efficiency losses when you convert energy,” explains Flybrid’s technical director, Doug Cross. “This system eliminates those losses, making it far more efficient.”

The flywheel weighs five kilograms and is made from carbon fiber wrapped around a steel core. Because it is so light, it has to spin fast—at 60,000 rpm—which means that its rim is traveling at supersonic speeds. As a result, it has to operate in a vacuum, and Flybrid has developed special seals so that the wheel can be fully enclosed inside a safety container in case of a crash. At top speed, the flywheel can store 540 kilojoules of energy, which is sufficient to accelerate an average-sized automobile from a standing start to 48 kilometers per hour.

“One way you can use this technology is to boost the car during a cruise,” Cross said. “We have a system installed on a Jaguar saloon, and that has shown that during a cruise, you can actually switch the engine off for 65 percent of the journey. With a V6 diesel engine, it cuts fuel use by 26 percent, but gives you the power of a V8 petrol engine.”

Become an MIT Technology Review Insider for in-depth analysis and unparalleled perspective.

Subscribe today
More from Sustainable Energy

Can we sustainably provide food, water, and energy to a growing population during a climate crisis?

Want more award-winning journalism? Subscribe to Insider Plus.
  • Insider Plus {! insider.prices.plus !}*

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    Print + Digital Magazine (6 bi-monthly issues)

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

    Technology Review PDF magazine archive, including articles, images, and covers dating back to 1899

    10% Discount to MIT Technology Review events and MIT Press

    Ad-free website experience

You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.