Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Emerging Technology from the arXiv

A View from Emerging Technology from the arXiv

Carbon Jelly: C60's Latest Trick

Carbon soccer balls can form into gels all by themselves, say chemists, overturning the long-held belief that gels must consist of at least two chemical components.

  • February 17, 2011

Gels are something of a puzzle for chemists. These jelly-like materials are not quite solid and yet not liquid either. Gels live in a kind of chemical twilight zone where they share many properties of both phases of matter.

So confusing is this, that chemists find it hard even to define what it is to be a gel, or what properties its components must have.

One thing they agree on however is that gels consist of at least two components: a liquid component and a solid component that forms into a loose network which binds the substance together. This is how the jelly-like properties arise.

Now even that piece of common-lore might have to change. Today, Patrick Royall at the University of Bristol in the UK and Stephen Williams at the Australian National University say that C60, the soccer ball form of carbon, can form into a gel all by itself.

So how come? For some time, chemists have known that C60 forms several different phases of matter. It can be a solid crystal, for example. But it is also known to form into clusters of a wide range of sizes. And it can form a liquid over a limited range of temperatures (although whether this liquid is stable or not, nobody is quite sure).

The question that interests chemists is whether a liquid-like state can exist at the same as the clusters, which could then bind together forming the characteristic network structure that would hold the jelly-like substance together.

Royall and Williams answer this question by creating a computer model of this substance and then seeing whether it is stable. And their conclusion is that it can. “We have presented numerical evidence that C60, under the right conditions can form a gel,” they say.

Such a substance would be a bizarre chemical curiosity. It means that in addition to forming diamond, graphite, graphene and an infinite number of carbon chickenwire structures such as tubes and footballs, carbon can also be a jelly.

But there’s more work ahead. Knowing that a substance can be stable is obviously useful but that doesn’t mean that it’s possible to make it.

Royall and Williams say it should exist over the time scales that they can simulate–up to 100 nanoseconds.

But these kinds of simulations are notoriously difficult to fine tune. It’s possible that C60 might prefer to crystallise.

Of course, there’s only one way to find out. And now there’s likely to be no shortage of volunteers willing to try.

Ref: arxiv.org/abs/1102.2959: C60: the first one-component gel?

Want to go ad free? No ad blockers needed.

Become an Insider
Already an Insider? Log in.
Want more award-winning journalism? Subscribe to Insider Basic.
  • Insider Basic {! insider.prices.basic !}*

    {! insider.display.menuOptionsLabel !}

    Six issues of our award winning print magazine, unlimited online access plus The Download with the top tech stories delivered daily to your inbox.

    See details+

    Print Magazine (6 bi-monthly issues)

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

/3
You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.