Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Intelligent Machines

Nanoscope

Specialized microscopes that can image individual atoms have opened up the nanometer-scaled world to scientists. But existing scanning probe microscopes, which move an extremely fine tip along a surface, are able only to map the topography of the atomic world; they cannot easily distinguish between different compounds.

To overcome this chemical blindness, scientists at Max Planck Institute in Martinsried, Germany, have built a scanning microscope able to perform infrared (IR) spectroscopy-a common analytical technique that exploits the characteristic IR absorption of different compounds. The tip of the microscope is positioned just above the sample and is illuminated by an infrared beam; the tip then senses the IR absorption of the sample beneath it. The Max Planck researchers have identified different polymers with a resolution of 100 nanometers, and hope to achieve resolution as fine as 10 nanometers.

More from Intelligent Machines

Artificial intelligence and robots are transforming how we work and live.

Want more award-winning journalism? Subscribe to Insider Online Only.
  • Insider Online Only {! insider.prices.online !}*

    {! insider.display.menuOptionsLabel !}

    Unlimited online access including articles and video, plus The Download with the top tech stories delivered daily to your inbox.

    See details+

    What's Included

    Unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

/3
You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.