Skip to Content

Sponsored

Computing

DataOps and the future of data management

The practice focuses on collaboration and automation to speed delivery of analytics—and accelerate innovation.

Produced in association withHitachi Vantara

DataOps and the future of data management

DataOps and the future of data management

Businesses today are facing a mammoth digital challenge—they’re striving to find ways to extract value from data. That is, they want to achieve specific business outcomes while the volume and variety of available data are rapidly increasing.

And don’t be fooled: Searching for those specks of data gold in a roiling sea of information is no easy feat. It takes the focus and effort of data scientists to do the mining, development teams to craft analytics applications that support smarter decision-making and fuel innovation, data stewards to maintain data quality and security, and IT folks to ensure availability and performance. Different teams and different goals for data means analytics applications often take too long to develop and reach the users who need them. Or they might not do what they’re intended to, which is help grow the business.

To make analytics more effective, organizations are replacing traditional data management with an emerging set of practices focused on collaboration and automation. It’s called data operations, or DataOps, a confluence of advanced data governance and analytics delivery practices that encompasses the entire data life cycle, from data retrieval and preparation to analysis and reporting. Like DevOps, which aims to speed up software development, DataOps incorporates agile and continuous-delivery development methods supported by on-demand IT resources. DataOps promises to help organizations optimize their data management; drive initiatives involving data-intensive technologies such as artificial intelligence, machine learning, and deep learning; and consistently produce desired business outcomes.

Download the full report.

Deep Dive

Computing

It’s time to retire the term “user”

The proliferation of AI means we need a new word.

Modernizing data with strategic purpose

Data strategies and modernization initiatives misaligned with the overall business strategy—or too narrowly focused on AI—leave substantial business value on the table.

How ASML took over the chipmaking chessboard

MIT Technology Review sat down with outgoing CTO Martin van den Brink to talk about the company’s rise to dominance and the life and death of Moore’s Law.

 

Why it’s so hard for China’s chip industry to become self-sufficient

Chip companies from the US and China are developing new materials to reduce reliance on a Japanese monopoly. It won’t be easy.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.