Skip to Content
Computing

IBM’s Dario Gil says quantum computing promises to accelerate AI

Neural networks may one day find themselves surpassed by quantum ones.
March 27, 2018

Speaking at MIT Technology Review’s EmTech Digital conference in San Francisco, Dario Gil of IBM said that quantum computers, which take advantage of the mind-bending phenomena of quantum physics, could have a big impact on one of the hottest fields in technology: artificial intelligence.

Unlike classical computers, which store information in bits that are either 1 or 0, quantum computers use qubits, which can exist in multiple states of 1 and 0 at the same time—a phenomenon known as “superposition.” Qubits can also influence one another even when they’re not physically connected, via a process known as “entanglement.”

Thanks to these exotic qualities, adding extra qubits to a quantum machine increases its computing power exponentially (see our qubit counter here). There are still challenges to be overcome. For instance, qubits’ delicate quantum state can be undone by even the tiniest vibration or change in temperature, like a bubble bursting at the slightest touch. This can introduce errors in calculations, though researchers are getting better at reducing these, and there’s hope quantum computers will eventually outperform even the most powerful supercomputers at certain tasks (see “Google’s close to ‘quantum supremacy.’ Here’s what that really means”). 

Machine learning could benefit from these developments. During his talk, Gil, who oversees IBM’s AI research efforts and its commercial quantum computing program, presented the results of a simple classification experiment that involves using machine learning to organize data into similar groups (in this case, dots with similar colors). IBM’s team first ran the task on a quantum machine without entangling the qubits, which produced an error rate of 5 percent. The second time around it ran the same experiment with the qubits entangled, which produced an error rate of just 2.5 percent.

What this suggests is that as quantum computers get better at harnessing qubits and at entangling them, they’ll also get better at tackling machine-learning problems. Other companies working on quantum machines, such as California-based startup Rigetti, have highlighted the technology’s potential in AI (see “A startup uses quantum computing to boost machine learning”). 

Gil cautions that what he calls “quantum AI networks” are no match for neural networks running on powerful conventional computers today. But looking further ahead, quantum machines may gain an edge for certain types of AI challenges. “It’s a really great time for the AI community to start exploring this future,” says Gil.

 

Deep Dive

Computing

ASML machine
ASML machine

Inside the machine that saved Moore’s Law

The Dutch firm ASML spent $9 billion and 17 years developing a way to keep making denser computer chips.

The Steiner tree problem:  Connect a set of points with line segments of minimum total length.
The Steiner tree problem:  Connect a set of points with line segments of minimum total length.

The 50-year-old problem that eludes theoretical computer science

A solution to P vs NP could unlock countless computational problems—or keep them forever out of reach.

DHS logo glitch
DHS logo glitch

The US is worried that hackers are stealing data today so quantum computers can crack it in a decade

The US government is starting a generation-long battle against the threat next-generation computers pose to encryption.

This new startup has built a record-breaking 256-qubit quantum computer

QuEra Computing, launched by physicists at Harvard and MIT, is trying a different quantum approach to tackle impossibly hard computational tasks.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.