Skip to Content

3-D-Printed Skin Leads the Way Toward Artificial Organs

Researchers claim that additive manufacturing can now produce functional skin, and the first internal organs may be ready within six years.
January 26, 2017

The initial hype surrounding 3-D printing may have started to fade, but researchers using the technique to create living tissue are showing encouraging results.

3-D printing parts of our anatomy is not a new idea. The basic premise: insert the correct cells into a polymer or gel, print them out into a 3-D structure, and then allow the cells to grow into a living entity. If such a feat can be achieved, it could provide a supply of organs for transplant patients and remove the need for donors.

This week, Spanish scientists from Madrid have published research describing new hardware that’s capable of printing functional human skin. The device creates the individual layers of skin, such as the dermis and epidermis, one atop the other. It does that by depositing plasma containing skin cells into precise geometries that allow the cells to flourish.

The researchers claim that the end results will be suitable for both transplantation and lab testing of new products. Initial transplants into mice also suggest that it’s safe, though the synthetic skin has yet to be approved for use in humans. Other organizations, such as L’Oreal, are also attempting to create skin using similar approaches.

But while this success lines up alongside other notable achievements, such as creating blood vessels and even synthetic ovaries for mice, 3-D-printing techniques have yet to yield entire organs for use in humans. That’s largely because printing cells in complex geometries without killing them remains difficult. Because it is flat and neatly layered, skin lends itself to printing—but rendering a heart is rather more difficult.

So just how far away from 3-D-printed human organs are we, exactly? The Economist has just taken a look at the entire bio-printing landscape to establish that. It suggests that recent advances in producing some of the more simple organs mean that the first 3-D-printed livers and kidneys for human transplant could flop out of a device within the next six years.

(Read more: BiofabricationThe Economist, "Microscale 3-D Printing," "3-D-Printed Kidney Parts Just Got Closer to Reality," "Artificial Organs May Finally Get a Blood Supply")

Keep Reading

Most Popular

Rendering of Waterfront Toronto project
Rendering of Waterfront Toronto project

Toronto wants to kill the smart city forever

The city wants to get right what Sidewalk Labs got so wrong.

Muhammad bin Salman funds anti-aging research
Muhammad bin Salman funds anti-aging research

Saudi Arabia plans to spend $1 billion a year discovering treatments to slow aging

The oil kingdom fears that its population is aging at an accelerated rate and hopes to test drugs to reverse the problem. First up might be the diabetes drug metformin.

Yann LeCun
Yann LeCun

Yann LeCun has a bold new vision for the future of AI

One of the godfathers of deep learning pulls together old ideas to sketch out a fresh path for AI, but raises as many questions as he answers.

images created by Google Imagen
images created by Google Imagen

The dark secret behind those cute AI-generated animal images

Google Brain has revealed its own image-making AI, called Imagen. But don't expect to see anything that isn't wholesome.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.