Skip to Content

Could Implantable LEDs Relieve Your Pain?

A new biocompatible device will make it easier for researchers to determine the neurological basis of pain.
November 16, 2015

Chronic pain is often tough to understand, much less treat. But a new flexible, implantable electronic device could illuminate why certain parts of your body hurt. And down the road, the system, which features a wirelessly activated light-emitting diode (LED), might even be able to provide pain relief with the flip of a switch.

After implanting this micro-LED in mice, researchers used it to manipulate neurons responsible for the sensation of pain.

In a recent demonstration, the device’s inventors showed that it could be implanted in mice and used to manipulate neural circuits known to be involved in creating the perception of pain by using an emerging technology called optogenetics. The technique entails adjusting the DNA of neurons so they can be made to fire, or can be blocked from firing, by shining light on them. The researchers also showed that the implants could be left in for long periods of time without significantly damaging the tissue or impairing motor function.

A growing number of researchers are using optogenetics, a technology invented roughly a decade ago (see “Brain Control”), to more precisely understand how groups of interconnected neurons work together to carry out discrete functions. But the technique has generally relied on external light sources, limiting the targetable circuits to those near a part of the skeleton, such as the skull, where a rigid fiber-optic cable can be held in place and prevented from damaging delicate neural tissue when the animal moves.

The new implantable system, which is based on very thin, soft materials with mechanical properties similar to those of biological tissues, doesn’t need to be stuck to a bone. That’s important for scientists hoping to better understand chronic pain that emerges from the activity of neurons in the peripheral nervous system and spinal cord.

Robert Gereau, a professor of anesthesiology and director of the pain center at Washington University in St. Louis, says he and his colleagues were trying to figure out how to avoid the need to tether animals to a fiber-optic cable a couple of years ago when a group led by John Rogers, a professor of materials science and engineering at the University of Illinois at Urbana-Champaign, demonstrated flexible and implantable microscale LEDs they could turn on wirelessly and use to influence brain activity in mice (see “Wireless Micro LEDs Control Mouse Behavior”).

The two groups teamed up to develop an iteration of the implantable micro-LED that could be used to study circuits in the peripheral nervous system and spinal cord. Key to the new design is a tiny, stretchable antenna that harvests energy from radio frequency signals to power the device. In the previous design, the antenna had been larger and had to be fixed to the mouse’s skull.

The researchers implanted the devices in mice, either over the sciatic nerve, which runs from the lower end of the spinal cord down the back of the lower limb, or in the so-called epidural space above the spinal cord. In proof-of-concept experiments, the group showed that by shining the light on groups of neurons thought to be involved in pain and modified to be light-sensitive, they could induce behaviors associated with pain.

Gereau says the new technology will open the door to investigations into “some very long-standing questions” about how sensory information is processed in the spinal cord, and help identify the specific roles of the different types of neurons thought to be involved in pain. A better understanding of the underlying biology might lead to new therapies that use optogenetics to target specific neural circuits, says Gereau. “How can we manipulate them to reduce the burden of chronic pain?”

Keep Reading

Most Popular

This new data poisoning tool lets artists fight back against generative AI

The tool, called Nightshade, messes up training data in ways that could cause serious damage to image-generating AI models. 

Rogue superintelligence and merging with machines: Inside the mind of OpenAI’s chief scientist

An exclusive conversation with Ilya Sutskever on his fears for the future of AI and why they’ve made him change the focus of his life’s work.

The Biggest Questions: What is death?

New neuroscience is challenging our understanding of the dying process—bringing opportunities for the living.

Data analytics reveal real business value

Sophisticated analytics tools mine insights from data, optimizing operational processes across the enterprise.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at with a list of newsletters you’d like to receive.