Skip to Content

Martian Life Could Be a Biotech Bonanza

The discovery of briny water on the Martian surface has brought new optimism that life might exist on our neighboring planet.
October 2, 2015

When NASA scientists announced that instruments on the Mars Reconnaissance Orbiter sensed signs of liquid water seeping on the Martian surface, they meant a solution salty enough to kill most living things on Earth. Temperatures on Mars are well below zero, so any liquid water would have to be loaded with salt, and probably not ordinary sodium chloride but something nastier: perchlorates, which are used in rocket fuel.

The water represented by the dark streaks on this image from NASA’s Mars Reconnaissance Orbiter would have to be loaded with salt, but so-called halophilic organisms can handle extreme salinity on Earth.

You wouldn’t want to drink it, but such a toxic brew wouldn’t kill everything, says biologist Shiladitya DasSarma of the University of Maryland, who studies salt-loving organisms, known as halophiles. These organisms flourish in the Great Salt Lake, the Red Sea, and the world’s briniest marshes. Some have been isolated from a frigid lake in Antarctica. “I think it’s quite possible there are halophiles that could survive on Mars,” he says.

Bugs with extreme adaptations tend to be useful because evolution has endowed them with proteins that have unusual resilience to heat, salt, chemical exposures, or other conditions that might be necessary for some industrial or medical process. Researchers borrowed an enzyme from a bacteria that thrives in the hot springs in Yellowstone National Park at temperatures as high as 131 °F to invent one of biology’s most useful tools—polymerase chain reaction, or PCR.

This electron microscope image shows some organisms dubbed “extremophiles” because they are adapted to extreme conditions on Earth.

Halophiles, too, have had important uses, especially those from a group known as archaea, says DasSarma. These are not bacteria but belong to a separate and more ancient domain of life. While some halophiles adapt to their surroundings by keeping salt out of their cells, these halophilic archaea let themselves fill up with salt. “These guys have a high salt concentration inside and outside,” he says. The essential trick of the halophiles is to make proteins that don’t die of thirst, he says, as they are competing with the ions in the salts for access to water. Their ability to survive in high salt solutions also makes them useful for other process where there’s little or no water, such as catalyzing chemical reactions in organic solvents.

The University of Connecticut chemist Robert Birge is working with proteins from a halophile called Halobacterium salinarum, a member of the archaea that lives in salt marshes. The organisms make a protein called bacteriorhodopsin, a pigment that dyes marshes a deep red or purple. Since the pigment is used by the organism to absorb light and use it for energy, he’s been adapting it for optical memory storage and optical processing. Most recently, he’s been researching the use of the pigment for a three-dimensional memory storage system called holographic memory, in which lasers etch data into the protein.

A few years ago, one of his students conceived of using bacteriorhodopsin for an artificial retina. Now they’ve built prototypes and found they can restore sight in animals.

Mars life, if it exists, might look very much like these halophiles or quite different, depending on its origin. Some scientists think that we might find Mars life that’s related to life on Earth, as the two planets have been swapping rocks since their formation and it’s not impossible for something deep inside a meteor to survive the journey. The other possibility is that life sprung up from an independent origin on Mars, in which case it may use a radically different biochemistry. Such a finding would profoundly change our understanding of the nature of life, since all life anyone has ever seen is related through a common origin. That’s made it hard to know what other kinds of life might be possible.

The scientists agree that if Mars life exists, no matter how it came about, it would be more likely to help humans than to cause some kind of epidemic like the fictional Andromeda strain. Halobacterium salinarum explodes when it comes in contact with distilled water. If you ingested the organisms, you would be fine, the bugs would not. We’re not nearly salty enough.

The other possibility, of course, is that despite the presence of water, no life exists on Mars.

Keep Reading

Most Popular

images created by Google Imagen
images created by Google Imagen

The dark secret behind those cute AI-generated animal images

Google Brain has revealed its own image-making AI, called Imagen. But don't expect to see anything that isn't wholesome.

AGI is just chatter for now concept
AGI is just chatter for now concept

The hype around DeepMind’s new AI model misses what’s actually cool about it

Some worry that the chatter about these tools is doing the whole field a disservice.

Hoan Ton-That, CEO of Clearview AI
Hoan Ton-That, CEO of Clearview AI

The walls are closing in on Clearview AI

The controversial face recognition company was just fined $10 million for scraping UK faces from the web. That might not be the end of it.

spaceman on a horse generated by DALL-E
spaceman on a horse generated by DALL-E

This horse-riding astronaut is a milestone in AI’s journey to make sense of the world

OpenAI’s latest picture-making AI is amazing—but raises questions about what we mean by intelligence.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.