Skip to Content

Making Stretchable Medical Electronics Practical

The latest stretchable electronics need to make a faster transition to patients, and this new work could help.
April 3, 2014

Stretchable electronics have been in development for years. For example, prototype skin patches with coiled wiring and flexible sensors are fast advancing to do things like sense heartbeats, muscle tremors, and other physiological signals (see “Making Stretchable Electronics,” “Electronic Sensors Printed Directly on the Skin,” and “A Bandage That Senses Tremors, Delivers Drugs, and Keeps a Record”). 

But these systems still face a challenge: you need to get the data from the patch. For continuous monitoring, this means batteries and radio transmitters.

New work suggests one solution: put conventional rigid battery and wireless transmitting technology in a fluid-filled plastic case that also includes flexible wiring and sensing elements. This approach—allowing the electronics to essentially float in a “highly visco-elastic polymer”—will make the device bigger. But for applications like fetal monitoring, it would be a whole lot more discreet and comforable than the boxy strapped-on devices that are now the norm.

A new paper, out today in Science, points out the details of how this could be done. “The outcome is a thin, conformable device technology that can softly laminate onto the surface of the skin to enable advanced, multifunctional operation for physiological monitoring in a wireless mode,” the authors write. The work, led by John Rogers, a materials scentist at the University of Illinois who is a leader in this area, might allow stretchable electronics to make a faster transition from lab to clinic.

Keep Reading

Most Popular

open sourcing language models concept
open sourcing language models concept

Meta has built a massive new language AI—and it’s giving it away for free

Facebook’s parent company is inviting researchers to pore over and pick apart the flaws in its version of GPT-3

transplant surgery
transplant surgery

The gene-edited pig heart given to a dying patient was infected with a pig virus

The first transplant of a genetically-modified pig heart into a human may have ended prematurely because of a well-known—and avoidable—risk.

Muhammad bin Salman funds anti-aging research
Muhammad bin Salman funds anti-aging research

Saudi Arabia plans to spend $1 billion a year discovering treatments to slow aging

The oil kingdom fears that its population is aging at an accelerated rate and hopes to test drugs to reverse the problem. First up might be the diabetes drug metformin.

Yann LeCun
Yann LeCun

Yann LeCun has a bold new vision for the future of AI

One of the godfathers of deep learning pulls together old ideas to sketch out a fresh path for AI, but raises as many questions as he answers.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.