Skip to Content

A Faster and More Efficient Way to Convert Carbon Dioxide into Fuel

New catalysts turn carbon dioxide into fuels faster and more efficiently.
December 4, 2013

Making carbon dioxide by burning hydrocarbons is easy. A pair of novel catalysts recently made by researchers at the University of Illinois at Chicago could make it far more practical to do the reverse, converting carbon dioxide and water into fuel.

Because running this reaction normally requires large amounts of energy, it has been economical only in rare cases (see “Company Makes CO2 into Liquid Fuel, with Help from a Volcano”). But if the process could be done commercially, liquid fuels could be made from the exhaust gases of fossil-fuel power plants.

The new work, described this week in the journal Nature Communications, improves on a pair of catalysts discovered last year that more efficiently turn carbon dioxide into carbon monoxide, which can then be made into gasoline and other products. Those catalysts produce carbon monoxide slowly, however, and one is made of silver, so it’s expensive. But the Illinois researchers have demonstrated that it’s possible to replace the silver with relatively inexpensive carbon fibers while maintaining about the same efficiency. And the technique produces carbon monoxide about 10 times faster.

The work is still in early stages, says Amin Salehi-Khojin, a professor of mechanical engineering at the University of Illinois at Chicago, who led the work. Salehi-Khojin says it will be necessary to produce larger amounts of the catalysts and find a way to incorporate them into a membrane that helps keep them stable over long periods of time—development work that will require industrial partners.

Salehi-Khojin says it may be possible to incorporate the catalysts into an “artificial leaf.” Right now, if the process were to run on sunlight, it would require at least two pieces of equipment: a solar panel to generate electricity, and then a reactor to form the carbon monoxide. A leaf-inspired system would absorb energy from the sun and use it to drive the chemical reactions directly, rather than making electricity first (see “A Greener ‘Artificial Leaf,’” “Sun Catalytix Seeks Second Act with Flow Battery,” and “Artificial Photosynthesis Effort Takes Root”). This approach would make the process more economical.

Keep Reading

Most Popular

A Roomba recorded a woman on the toilet. How did screenshots end up on Facebook?

Robot vacuum companies say your images are safe, but a sprawling global supply chain for data from our devices creates risk.

A startup says it’s begun releasing particles into the atmosphere, in an effort to tweak the climate

Make Sunsets is already attempting to earn revenue for geoengineering, a move likely to provoke widespread criticism.

10 Breakthrough Technologies 2023

Every year, we pick the 10 technologies that matter the most right now. We look for advances that will have a big impact on our lives and break down why they matter.

These exclusive satellite images show that Saudi Arabia’s sci-fi megacity is well underway

Weirdly, any recent work on The Line doesn’t show up on Google Maps. But we got the images anyway.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.