Skip to Content

Extremophiles Survive Simulated Conditions on Europa

Astrobiologists have reproduced the conditions on the surface of Europa and found that some extremophiles survive

A couple of weeks of ago, we looked at a study indicating that in Earth ejecta is more likely to end up in the Jovian system than on Mars, at least in some scenarios. That raised the possibility that life from Earth could have made its way to places like the Jovian moon Europa, which astronomers believe has a large salt water ocean beneath its icy crust.

But this would only possible if terrestrial bugs can survive the intense vacuum and radiation in interplanetary space. Astrobiologists have studied the way many creatures survive in a space-like conditions. They’ve looked at bacteria, fungi, viruses and even biomolecules such as DNA. Some lucky bugs have even survived the journey to the Moon and back.

But one branch of life has been largely ignored in these tests–archae. That’s surprising since these bacteria-like bugs often flourish in extreme conditions on Earth.

Today, Ximena Abrevaya at the Universidad de Buenos Aires in Argentina and a few pals go some way to righting this wrong. These guys created a vacuum similar to that which exists on the surface of Europa. They then placed three organisms in it: the salt-loving archae Natrialba magadii and Haloferax volcanii and the radiation-resistant bacteria Deinococcus radiodurans.

They then bombarded these creatures with the levels of ultraviolet radiation that might occur on the surface of Europa and waited to see what happened. None of Haloferax volcanii survived. But small amounts of both Natrialba magadii and Deinococcus radiodurans did.
That’s interesting because Deinococcus radiodurans is well known as one of the hardiest organisms on the planet. Numerous experiments have shown that it can survive levels of radiation, vacuum, acidity, cold and dehydration that would kill almost everything else.
For that reason, Deinococcus radiodurans has always been a candidate for seeding life elsewhere in the Solar System.
But now it looks as if it would have a companion on such a journey in the form of Natrialba magadii, an organism only isolated from the salty waters of Lake Magadi in Kenya in 1984.
Before getting too excited, however, it’s important to note that these experiments have a weakness: the tests lasted only for three hours.
That’s not long compared to interplanetary journey times: Earth ejecta takes tens of thousands of years to reach other bodies. However, the journey on a spacecraft from Earth would be much shorter, just a few years.
So if Abrevaya and co’s experiment tells us anything, it’s the importance of sterilising spacecraft before they leave here.
It’s just possible that right now, small colonies of Deinococcus radiodurans and Natrialba magadii are flourishing in the weak sunshine and cool wind around Viking 1 and 2.
Ref: arxiv.org/abs/1109.6590: Comparative Suvival Analysis Of Deinococcus Radiodurans and The Haloarchaea Natrialba Magadii And Haloferax volcanii, Exposed To Vacuum Ultraviolet Irradiation

Keep Reading

Most Popular

open sourcing language models concept
open sourcing language models concept

Meta has built a massive new language AI—and it’s giving it away for free

Facebook’s parent company is inviting researchers to pore over and pick apart the flaws in its version of GPT-3

transplant surgery
transplant surgery

The gene-edited pig heart given to a dying patient was infected with a pig virus

The first transplant of a genetically-modified pig heart into a human may have ended prematurely because of a well-known—and avoidable—risk.

Muhammad bin Salman funds anti-aging research
Muhammad bin Salman funds anti-aging research

Saudi Arabia plans to spend $1 billion a year discovering treatments to slow aging

The oil kingdom fears that its population is aging at an accelerated rate and hopes to test drugs to reverse the problem. First up might be the diabetes drug metformin.

Yann LeCun
Yann LeCun

Yann LeCun has a bold new vision for the future of AI

One of the godfathers of deep learning pulls together old ideas to sketch out a fresh path for AI, but raises as many questions as he answers.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.