Skip to Content

Bird Navigation Breaks Entanglement Record

The best theory of bird navigation implies that nature has found a way to preserve entanglement in messy biological systems at body temperature.

In the race to own the golden goose that is quantum information processing, quantum physicists are scrabbling to find ways of storing and manipulating quantum information. That turns out to be hard. Quantum information is fragile stuff: sneeze and you lose it.

But while researchers have been puzzling over this problem for a few years now, nature has had 4.5 billion years to work on it using the tools of natural selection. Various scientists have pointed out that photosynthesis and bird navigation must rely on quantum effects (we’ve looked at them on this blog here and here). So it’s just possible that the solution to this problem of handling quantum information has been staring us in the face.

Now Vladko Vedral at the University of Oxford and a few pals have calculated just how good nature could be at this game. The answer is very good: it looks as if nature has worked out how to preserve entanglement at body temperature over time scales that physicists can only dream about.

The system that Vedral and co have studied is a model that describes how birds navigate using the earth’s magnetic field. The most recent thinking is that birds have molecules at the back of their eyes that are sensitive to both photons and the orientation of the earth’s magnetic field. When one of these molecules absorbs a photon, an electron pair is split, and one of these electrons is transferred to another part of the molecule. These electrons then form a “radical pair” that are entangled.

In the absence of a magnetic field, this pair would recombine to form the original molecular state. But the earth’s magnetic field can flip the spin of one of these electrons, allowing them to recombine in a different way and leaving the molecule in an alternative chemical state that the bird can sense. The result is that the bird “sees” the earth’s magnetic field as it flies.

This raises an interesting question: how long does this entangled state last?

Vedral and co have done the numbers and say that it lasts for at least 100 microseconds. That’s an extraordinary figure. The best that humans have measured is 80 microseconds for so-called electron spin relaxation in C60 buckyballs.

Curiously, entanglement is not being put to work in magnetoreception; it is simply a by-product of the process. It also seems to play a nonspeaking role in photosynthesis too, as we saw here. Given that nature seems to have created the conditions in which entanglement thrives, the big question now is whether there are any natural systems that exploit it.

Ref: arxiv.org/abs/0906.3725: Quantum Coherence and Entanglement in the Avian Compass

Keep Reading

Most Popular

open sourcing language models concept
open sourcing language models concept

Meta has built a massive new language AI—and it’s giving it away for free

Facebook’s parent company is inviting researchers to pore over and pick apart the flaws in its version of GPT-3

transplant surgery
transplant surgery

The gene-edited pig heart given to a dying patient was infected with a pig virus

The first transplant of a genetically-modified pig heart into a human may have ended prematurely because of a well-known—and avoidable—risk.

Muhammad bin Salman funds anti-aging research
Muhammad bin Salman funds anti-aging research

Saudi Arabia plans to spend $1 billion a year discovering treatments to slow aging

The oil kingdom fears that its population is aging at an accelerated rate and hopes to test drugs to reverse the problem. First up might be the diabetes drug metformin.

Yann LeCun
Yann LeCun

Yann LeCun has a bold new vision for the future of AI

One of the godfathers of deep learning pulls together old ideas to sketch out a fresh path for AI, but raises as many questions as he answers.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.