Skip to Content

Fraudulent Stem Cells Actually a Scientific First

What Korean scientists falsely reported to be the first cloned human stem cells were the result of a different scientific first: parthenogenesis, or virgin birth.
August 3, 2007

In 2005, Korean scientists ignited one of the biggest scientific scandals in recent history when they claimed to have created the very first lines of cloned human stem cells. New analysis has confirmed that the duplicitous researchers did actually achieve a scientific milestone, producing what was likely the first line of stem cells generated from an unfertilized human egg. The process, also known as parthenogenesis, has since been replicated by other groups.

The findings were published online on Thursday by the journal Cell Stem Cell by Harvard biologists George Daley and Kitai Kim. A press release from Children’s Hospital Boston explains the methodology.

Kim, Daley and collaborators used sophisticated genetic techniques to compare mouse embryonic stem cells derived from different sources: from embryos produced by natural fertilization; from embryos produced by parthenogenesis (through artificial activation of unfertilized eggs); and from embryos created through somatic cell nuclear transfer (replacing the nucleus of an egg with the nucleus from a cell in the body). They also tested three human embryonic stem cells isolated from fertilized embryos as well as the Korean line of human cells claimed to have been created through nuclear transfer.

They discovered that parthenogenetic embryonic stem cells have a distinct genetic signature that reflects their biological origins. All cells typically contain paired sets of chromosomes, one inherited from the mother and the other from the father. During the process of parthenogenesis, one set of chromosomes is duplicated, resulting in both chromosomes of the pair being of one parental type or the other (a pattern called homozygosity, which has reduced genetic diversity). Kim and Daley showed previously that because chromosomes often exchange genetic material early in the process of cell division that creates the egg (meiosis), the duplicated chromosomes are not actually identical, but have places where the genes differ between members of the pair (called heterozygosity). In embryonic stem cells of parthenogenetic origin, this occurs especially toward the ends of the chromosomes, which are more likely to exchange genetic material, rather than the middle. In contrast, embryonic stem cells created through nuclear transfer show a consistent pattern of variation through all regions of the chromosome–thus making them easily distinguishable from parthenogenetic cells.

Keep Reading

Most Popular

Workers disinfect the street outside Shijiazhuang Railway Station
Workers disinfect the street outside Shijiazhuang Railway Station

Why China is still obsessed with disinfecting everything

Most public health bodies dealing with covid have long since moved on from the idea of surface transmission. China’s didn’t—and that helps it control the narrative about the disease’s origins and danger.

individual aging affects covid outcomes concept
individual aging affects covid outcomes concept

Anti-aging drugs are being tested as a way to treat covid

Drugs that rejuvenate our immune systems and make us biologically younger could help protect us from the disease’s worst effects.

Europe's AI Act concept
Europe's AI Act concept

A quick guide to the most important AI law you’ve never heard of

The European Union is planning new legislation aimed at curbing the worst harms associated with artificial intelligence.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.