Skip to Content

Printing Press for Biosensors

Making microparticles in a single step.

Biologists have long sought a cheap way to simultaneously detect different types of biological molecules in a sample, such as the several malarial proteins that might be present in a patient’s blood. One approach uses polymer tags with bar code-like lines that glow different colors when receptors on the tags bind to specific molecules. But making such tags on a large scale has been prohibitively expensive, as each extra bar line adds another step to the manufacturing process.

Now a group of MIT researchers has created a microfluidic printing press that can produce tiny particles in a single step. In addition to biotags, the method can turn out all kinds of shapes – from keys to cylinders to swirls – that could be used to make everything from microelectromechanical machines to optical devices, fabrics, and even the miniature stirring bars and valves used in microfluidics. “This is a beautiful piece of work for continuous synthesis of particles, with great flexibility in the shapes that can be produced,” says Howard Stone, a professor of engineering at Harvard University.

The process, developed by an MIT group led by chemical engineer Patrick Doyle, begins with one or several closely spaced, parallel, 100–micrometer–scale streams of liquid. The liquids contain the polymers’ precursors, some of which may be bound to proteins that can serve as receptors on a biotag. A flash of ultraviolet light projected through a stencil causes the polymers to solidify in specific shapes. The resulting particles can have several “stripes” – each created from a separate stream of fluid.

Keep Reading

Most Popular

Rendering of Waterfront Toronto project
Rendering of Waterfront Toronto project

Toronto wants to kill the smart city forever

The city wants to get right what Sidewalk Labs got so wrong.

Muhammad bin Salman funds anti-aging research
Muhammad bin Salman funds anti-aging research

Saudi Arabia plans to spend $1 billion a year discovering treatments to slow aging

The oil kingdom fears that its population is aging at an accelerated rate and hopes to test drugs to reverse the problem. First up might be the diabetes drug metformin.

Yann LeCun
Yann LeCun

Yann LeCun has a bold new vision for the future of AI

One of the godfathers of deep learning pulls together old ideas to sketch out a fresh path for AI, but raises as many questions as he answers.

images created by Google Imagen
images created by Google Imagen

The dark secret behind those cute AI-generated animal images

Google Brain has revealed its own image-making AI, called Imagen. But don't expect to see anything that isn't wholesome.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.