Skip to Content

Printing Press for Biosensors

Making microparticles in a single step.

Biologists have long sought a cheap way to simultaneously detect different types of biological molecules in a sample, such as the several malarial proteins that might be present in a patient’s blood. One approach uses polymer tags with bar code-like lines that glow different colors when receptors on the tags bind to specific molecules. But making such tags on a large scale has been prohibitively expensive, as each extra bar line adds another step to the manufacturing process.

Now a group of MIT researchers has created a microfluidic printing press that can produce tiny particles in a single step. In addition to biotags, the method can turn out all kinds of shapes – from keys to cylinders to swirls – that could be used to make everything from microelectromechanical machines to optical devices, fabrics, and even the miniature stirring bars and valves used in microfluidics. “This is a beautiful piece of work for continuous synthesis of particles, with great flexibility in the shapes that can be produced,” says Howard Stone, a professor of engineering at Harvard University.

The process, developed by an MIT group led by chemical engineer Patrick Doyle, begins with one or several closely spaced, parallel, 100–micrometer–scale streams of liquid. The liquids contain the polymers’ precursors, some of which may be bound to proteins that can serve as receptors on a biotag. A flash of ultraviolet light projected through a stencil causes the polymers to solidify in specific shapes. The resulting particles can have several “stripes” – each created from a separate stream of fluid.

Keep Reading

Most Popular

Here’s how a Twitter engineer says it will break in the coming weeks

One insider says the company’s current staffing isn’t able to sustain the platform.

Technology that lets us “speak” to our dead relatives has arrived. Are we ready?

Digital clones of the people we love could forever change how we grieve.

How to befriend a crow

I watched a bunch of crows on TikTok and now I'm trying to connect with some local birds.

Starlink signals can be reverse-engineered to work like GPS—whether SpaceX likes it or not

Elon said no thanks to using his mega-constellation for navigation. Researchers went ahead anyway.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.