Wireless Isn’t What You Think It Is
Dartmouth’s Computer Science Department has released a technical report comparing actual wireless network performance with what both models and most people think wireless performance actually is.
Quoting from the abstract:
Although it is tempting to assume that all radios have circular range, have perfect coverage in that range, and travel on a two-dimensional plane, most researchers are increasingly aware of the need to represent more realistic features, including hills, obstacles, link asymmetries, and unpredictable fading. Although many have noted the complexity of real radio propagation, and some have quantified the effect of overly simple assumptions on the simulation of ad~hoc network protocols, we provide a comprehensive review of six assumptions that are still part of many ad~hoc network simulation studies. In particular, we use an extensive set of measurements from a large outdoor routing experiment to demonstrate the weakness of these assumptions, and show how these assumptions cause simulation results to differ significantly from experimental results.
Keep Reading
Most Popular

The big new idea for making self-driving cars that can go anywhere
The mainstream approach to driverless cars is slow and difficult. These startups think going all-in on AI will get there faster.

Inside Charm Industrial’s big bet on corn stalks for carbon removal
The startup used plant matter and bio-oil to sequester thousands of tons of carbon. The question now is how reliable, scalable, and economical this approach will prove.

The dark secret behind those cute AI-generated animal images
Google Brain has revealed its own image-making AI, called Imagen. But don't expect to see anything that isn't wholesome.

The hype around DeepMind’s new AI model misses what’s actually cool about it
Some worry that the chatter about these tools is doing the whole field a disservice.
Stay connected

Get the latest updates from
MIT Technology Review
Discover special offers, top stories, upcoming events, and more.