Diamond Chips
Silicon Valley may soon have to change its name. A team of scientists led by Matthias Schreck of the University of Augsburg in Germany has developed a crystalline diamond film that could produce more resilient semiconductor chips than those made from silicon. Until now, synthetic diamonds have proved a poor semiconducting material. Their microscopic crystals are a disorderly hodgepodge, and their edges are not evenly aligned, impeding the flow of current. Now, Schreck and his colleagues have discovered that by growing the diamond film on a surface of iridium, instead of on silicon, they can keep its grain boundaries aligned. Adding atoms of boron or nitrogen enables the diamond film to conduct electricity. Manufacturers plan to build a diamond chip that can withstand temperatures of 500 C, compared to only about 150 C for silicon chips. The chips would be most useful in devices located near hot-burning engines, such as those used in automobiles or airplanes.
Keep Reading
Most Popular
Geoffrey Hinton tells us why he’s now scared of the tech he helped build
“I have suddenly switched my views on whether these things are going to be more intelligent than us.”
Meet the people who use Notion to plan their whole lives
The workplace tool’s appeal extends far beyond organizing work projects. Many users find it’s just as useful for managing their free time.
Learning to code isn’t enough
Historically, learn-to-code efforts have provided opportunities for the few, but new efforts are aiming to be inclusive.
Deep learning pioneer Geoffrey Hinton has quit Google
Hinton will be speaking at EmTech Digital on Wednesday.
Stay connected
Get the latest updates from
MIT Technology Review
Discover special offers, top stories, upcoming events, and more.