Skip to Content

Shrinking Chips

Hardware

For handheld products such as cell phones and digital cameras to get smaller, manufacturers must also shrink the devices’ silicon memory chips. But the tinier the chip, the more vulnerable it is to leaking the charge that stores data. Now researchers at the California Institute of Technology and Allentown, PA-based Agere Systems say they’ve devised a new-and inexpensive-way of fabricating leak-resistant memory that could provide chips with much greater storage capacity.

The technique applies to flash memory, which retains information even after power is turned off. As a conventional flash memory chip gets smaller, a critical layer of insulation that protects data stored as electric charges becomes thinner, risking charge leaks.

Electrical engineer Jan De Blauwe of Agere, applied physics and materials science professor Harry Atwater of Caltech and their colleagues have overcome this problem by creating a method for storing charges in a group of silicon nanocrystals grown and insulated individually at low cost. If one crystal fails, it doesn’t affect the information saved. “And because the charge storage is more robust,” says De Blauwe, “you can reduce the thickness of the insulating layer.”

Sandip Tiwari of Cornell University’s Nanofabrication Facility says the new technique is promising. “If reproducible, it could lead to some important improvements as we scale device structures to smaller dimensions,” he says. Theoretically, it could also allow flash memory manufacturers to pack 100 times more memory onto existing silicon chips.

Keep Reading

Most Popular

This startup wants to copy you into an embryo for organ harvesting

With plans to create realistic synthetic embryos, grown in jars, Renewal Bio is on a journey to the horizon of science and ethics.

VR is as good as psychedelics at helping people reach transcendence

On key metrics, a VR experience elicited a response indistinguishable from subjects who took medium doses of LSD or magic mushrooms.

This nanoparticle could be the key to a universal covid vaccine

Ending the covid pandemic might well require a vaccine that protects against any new strains. Researchers may have found a strategy that will work.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.