Nanoscope
Specialized microscopes that can image individual atoms have opened up the nanometer-scaled world to scientists. But existing scanning probe microscopes, which move an extremely fine tip along a surface, are able only to map the topography of the atomic world; they cannot easily distinguish between different compounds.
To overcome this chemical blindness, scientists at Max Planck Institute in Martinsried, Germany, have built a scanning microscope able to perform infrared (IR) spectroscopy-a common analytical technique that exploits the characteristic IR absorption of different compounds. The tip of the microscope is positioned just above the sample and is illuminated by an infrared beam; the tip then senses the IR absorption of the sample beneath it. The Max Planck researchers have identified different polymers with a resolution of 100 nanometers, and hope to achieve resolution as fine as 10 nanometers.
Keep Reading
Most Popular
Geoffrey Hinton tells us why he’s now scared of the tech he helped build
“I have suddenly switched my views on whether these things are going to be more intelligent than us.”
ChatGPT is going to change education, not destroy it
The narrative around cheating students doesn’t tell the whole story. Meet the teachers who think generative AI could actually make learning better.
Meet the people who use Notion to plan their whole lives
The workplace tool’s appeal extends far beyond organizing work projects. Many users find it’s just as useful for managing their free time.
Learning to code isn’t enough
Historically, learn-to-code efforts have provided opportunities for the few, but new efforts are aiming to be inclusive.
Stay connected
Get the latest updates from
MIT Technology Review
Discover special offers, top stories, upcoming events, and more.