Skip to Content

Robots That Teach Each Other

What if robots could figure out more things on their own and share that knowledge among themselves?
February 23, 2016
Kristian Hammerstad

Many of the jobs humans would like robots to perform, such as packing items in warehouses, assisting bedridden patients, or aiding soldiers on the front lines, aren’t yet possible because robots still don’t recognize and easily handle common objects. People generally have no trouble folding socks or picking up water glasses, because we’ve gone through “a big data collection process” called childhood, says Stefanie Tellex, a computer science professor at Brown University. For robots to do the same types of routine tasks, they also need access to reams of data on how to grasp and manipulate objects. Where does that data come from? Typically it has come from painstaking programming. But ideally, robots could get some information from each other.

That’s the theory behind Tellex’s “Million Object Challenge.” The goal is for research robots around the world to learn how to spot and handle simple items from bowls to bananas, upload their data to the cloud, and allow other robots to analyze and use the information.

Tellex’s lab in Providence, Rhode Island, has the air of a playful preschool. On the day I visit, a Baxter robot, an industrial machine produced by Rethink Robotics, stands among oversized blocks, scanning a small hairbrush. It moves its right arm noisily back and forth above the object, taking multiple pictures with its camera and measuring depth with an infrared sensor. Then, with its two-pronged gripper, it tries different grasps that might allow it to lift the brush. Once it has the object in the air, it shakes it to make sure the grip is secure. If so, the robot has learned how to pick up one more thing.

The robot can work around the clock, frequently with a different object in each of its grippers. Tellex and her graduate student John Oberlin have gathered—and are now sharing—data on roughly 200 items, starting with such things as a child’s shoe, a plastic boat, a rubber duck, a garlic press and other cookware, and a sippy cup that originally belonged to her three-year-old son. Other scientists can contribute their robots’ own data, and Tellex hopes that together they will build up a library of information on how robots should handle a million different items. Eventually, robots confronting a crowded shelf will be able to “identify the pen in front of them and pick it up,” Tellex says.

Stefanie Tellex and a Baxter robot at Brown University.

Robots That Teach Each Other

  • Breakthrough

    Robots that learn tasks and send that knowledge to the cloud for other robots to pick up later.
  • Why it matters

    Progress in robotics could accelerate dramatically if each type of machine didn’t have to be programmed separately.
  • Key players

    Ashutosh Saxena, Brain of Things; Stefanie Tellex, Brown University; Pieter Abbeel, Ken Goldberg, and Sergey Levine, University of California, Berkeley; Jan Peters, Technical University of Darmstadt, Germany

Projects like this are possible because many research robots use the same standard framework for programming, known as ROS. Once one machine learns a given task, it can pass the data on to others—and those machines can upload feedback that will in turn refine the instructions given to subsequent machines. Tellex says the data about how to recognize and grasp any given object can be compressed to just five to 10 megabytes, about the size of a song in your music library.

Tellex was an early partner in a project called RoboBrain, which demonstrated how one robot could learn from another’s experience. Her collaborator Ashutosh Saxena, then at Cornell, taught his PR2 robot to lift small cups and position them on a table. Then, at Brown, Tellex downloaded that information from the cloud and used it to train her Baxter, which is physically different, to perform the same task in a different environment.

Such progress might seem incremental now, but in the next five to 10 years, we can expect to see “an explosion in the ability of robots,” says Saxena, now CEO of a startup called Brain of Things. As more researchers contribute to and refine cloud-based knowledge, he says, “robots should have access to all the information they need, at their fingertips.”

Each time the robot determines the best way to grasp and hold something, it files that data away in a format other robots can use.

Keep Reading

Most Popular

This new data poisoning tool lets artists fight back against generative AI

The tool, called Nightshade, messes up training data in ways that could cause serious damage to image-generating AI models. 

Rogue superintelligence and merging with machines: Inside the mind of OpenAI’s chief scientist

An exclusive conversation with Ilya Sutskever on his fears for the future of AI and why they’ve made him change the focus of his life’s work.

Data analytics reveal real business value

Sophisticated analytics tools mine insights from data, optimizing operational processes across the enterprise.

Driving companywide efficiencies with AI

Advanced AI and ML capabilities revolutionize how administrative and operations tasks are done.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at with a list of newsletters you’d like to receive.