Skip to Content

Meltdown of Toshiba’s Nuclear Business Dooms New Construction in the U.S.

The collapse of the Tokyo company’s nuclear development arm puts a likely end to new U.S. plants.
February 17, 2017

Toshiba’s dramatic exit from the business of building nuclear power plants lands another blow to a beleaguered sector, undermining new development and research on advanced reactor designs.

After acquiring a majority stake in Pittsburgh-based Westinghouse Electric in 2006 for $5.4 billion, the Tokyo technology conglomerate had high hopes for rolling out a new generation of safer, smaller, cheaper power plants, as well as a series of streamlined full-scale reactors. Four of the latter are under construction in the United States, representing the only new reactors currently being built in the country. But the company was bedeviled by cost overruns, technical problems, conflicts with contractors, and regulatory challenges that set those projects back by years.

On Tuesday, Toshiba projected a $6.3 billion write-down for its nuclear unit and said it was looking to unload its stake. “It looked like a big deal at the time, but it’s turned into a mess,” says Michael Golay, a professor of nuclear science and engineering at MIT. “And it’s likely to have a very chilling effect.”

Toshiba’s four massive nuclear plants now under construction in the southern United States are AP1000 pressurized-water reactors, which use a simplified design that was supposed to accelerate construction. But the Vogtle project in Georgia and the V.C. Summer project in South Carolina are both around three years behind schedule and, together, billions of dollars over budget.

The company said those projects will continue, but many energy experts believe Toshiba’s decision to cease building new reactors spells the end of any nuclear construction in the United States for the foreseeable future. Analysts doubt Toshiba will find a buyer for its Westinghouse stake, or any willing construction partners to move ahead with dozens of additional plants it had once planned.

Toshiba’s struggles reflect the slow demise of nuclear power in much of the world (see “Giant Holes in the Ground”). The industry has been plagued by the rising cost of construction, the low price of natural gas, the Fukushima disaster in 2011, and the stricter regulations and souring public perceptions that followed. Germany is scaling down its nuclear program, engineering powerhouses like GE and Siemens have pulled back from the market, and France recently engineered the takeover of the nuclear giant Areva to rescue it after a series of stumbles.

Many fear the slowdown will prevent nations from building enough capacity to avoid the growing risks of climate change. The International Energy Agency estimates that nuclear energy capacity needs to double by 2050 to keep worldwide temperatures from rising more than 2 °C. Absent a carbon-capture breakthrough or a miracle battery, there’s no realistic plan for cutting greenhouse-gas emissions fast enough without far more use of nuclear, says Steven Chu, the former secretary of energy and a professor of physics at Stanford.

There is, however, something of a nuclear power renaissance under way in some parts of the world, including South Korea, Russia, India, and China. Worldwide, about 60 reactors are under construction and 160 are planned—enough to add almost half again today’s capacity, according to the World Nuclear Association. China alone is building dozens of conventional nuclear plants and forging ahead with advanced reactor designs in hopes of becoming the world’s leader in nuclear power.

Westinghouse’s 1,100-megawatt AP1000 pressurized-water reactors were specifically designed to be safer and easier to build than traditional nuclear plants, in part by utilizing standardized components. But plant construction has been plagued by engineering setbacks as well as design revisions required by the Nuclear Regulatory Commission.

Some issues probably stemmed from mismanagement. But MIT’s Golay says Westinghouse’s problems underscore intrinsic challenges for any company attempting to develop nuclear power in the United States, including a lack of institutional expertise after decades of little construction, rigid regulatory oversight, and shrinking appetites among investors.

Getting nuclear projects moving forward again in the United States is likely to require some combination of supportive government policies and improved construction and deployment methods, says Mike Ford, a researcher at Carnegie Mellon who focuses on nuclear energy development.

Keep Reading

Most Popular

Scientists are finding signals of long covid in blood. They could lead to new treatments.

Faults in a certain part of the immune system might be at the root of some long covid cases, new research suggests.

Large language models can do jaw-dropping things. But nobody knows exactly why.

And that's a problem. Figuring it out is one of the biggest scientific puzzles of our time and a crucial step towards controlling more powerful future models.

OpenAI teases an amazing new generative video model called Sora

The firm is sharing Sora with a small group of safety testers but the rest of us will have to wait to learn more.

Google’s Gemini is now in everything. Here’s how you can try it out.

Gmail, Docs, and more will now come with Gemini baked in. But Europeans will have to wait before they can download the app.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.