Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Printable Electronics

New nanoscale stamping process prints electronic ink.

The next time you place your coffee order, imagine slapping a temperature-sensing sticker onto your to-go cup. Someday, the high-tech stamping that produces such a sticker might also bring us food packaging that displays a digital countdown to warn of spoiling produce, or even a windowpane that shows the day’s forecast, based on measurements of the weather conditions outside.

Engineers at MIT have invented a fast, precise stamping process that may make such electronic surfaces an inexpensive reality. In a paper published in Science Advances, the researchers report having fabricated a stamp made from carbon nanotubes that can print electronic inks onto both rigid and flexible surfaces.

This story is part of the March/April 2017 Issue of the MIT News Magazine
See the rest of the issue
Subscribe

A. John Hart, an associate professor in contemporary technology and mechanical engineering, says the team’s stamping process should be able to print transistors small enough to control individual pixels in high-resolution displays and touch screens. It may also offer a relatively cheap, fast way to manufacture electronic surfaces.

“There is a huge need for printing of electronic devices that are extremely inexpensive but provide simple computations and interactive functions,” Hart says. He adds that the group’s newly developed printing process “is an enabling technology for high-­performance, fully printed electronics, including transistors, optically functional surfaces, and ubiquitous sensors.”

To precisely print electronics, Hart and his team designed “nanoporous” stamps. Spongier than rubber, and about the size of a fingernail, they have patterned features that are much smaller than the width of a human hair.

To create such highly detailed stamps, the team used carbon nanotubes—strong, microscopic sheets of carbon atoms, arranged in cylinders. The researchers used the group’s previously developed techniques to grow the nanotubes on a surface of silicon in carefully controlled patterns, including honeycomb-like hexagons and flower-shaped designs. Then they infused the stamp with a small volume of electronic ink containing semiconducting nanoparticles such as silver, zinc oxide, or quantum dots.

The researchers built a printing machine with a motorized spool, around which flexible substrates can be wound. They fixed each stamp onto a spring-mounted platform to control the force used to press the stamps up onto the substrate as the spool spins over the platform.

Testing revealed that the printed patterns had enough electrical conductivity to serve, for example, as high-­performance transparent electrodes. Hart and his team now plan to pursue the possibility of printed electronics.

Become an MIT Technology Review Insider for in-depth analysis and unparalleled perspective.

Subscribe today
Next in MIT News
Want more award-winning journalism? Subscribe to Insider Plus.
  • Insider Plus {! insider.prices.plus !}*

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    Print + Digital Magazine (6 bi-monthly issues)

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

    Technology Review PDF magazine archive, including articles, images, and covers dating back to 1899

    10% Discount to MIT Technology Review events and MIT Press

    Ad-free website experience

/3
You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.