A View from Allison Macfarlane

Nuclear’s Glacial Pace

There’s a reason it takes so long to approve a new reactor design.

  • August 23, 2016

Climate change has forced us to rethink how we get electricity. Use of renewable sources like solar and wind is rapidly increasing, while nuclear, though long a reliable source of carbon-free electricity, is not. Meanwhile, a number of startups are promising cheap, safe, proliferation-­resistant nuclear energy in the next decade (see “Fail-Safe Nuclear Power”). 

Can these startups fulfill their promises? Outside of China, nuclear power is expanding nowhere. China has 21 new reactors under construction; Russia has nine, India six. The U.S. is bringing five new plants online, but since 2012, five other reactors have been retired, with seven more to be shuttered by 2019. California’s Diablo Canyon plant recently announced it will close by 2025. With other plants closing in Japan, Germany, and the U.K., more reactors may be decommissioned than built in the near future.

So why is this happening? Because it’s expensive and time-consuming to design and build a new nuclear plant, and there are cheaper, easier alternatives.

This story is part of our September/October 2016 Issue
See the rest of the issue
Subscribe

The U.S. Nuclear Regulatory Commission has been waiting since 2014 for applications for design certification licenses for small modular reactors—smaller versions of the large and extra-large operating light-water reactors, with additional safety features. Such plants, which could be factory-built and snapped together on site, hold the promise of providing cheaper nuclear power in a more distributed fashion. Other designs are on the horizon, including molten-salt reactors, which are promising but won’t be ready for decades.

In 2015, the General Accountability Office reported that it takes 20 to 25 years to develop a new reactor in the United States—10 years for the design phase, 3.5 years for a design certification license from the NRC, four years for a combined operating license, and another four years for construction. And that’s only in an ideal world where no unexpected problems occur.

The GAO also found that it’s not cheap to bring a design to fruition: just to reach the design certification point costs somewhere between $1 billion and $2 billion, and only about $75 million of that is NRC fees. There’s a reason it takes so long and costs so much: manufacturers need to confirm that the design is safe and secure.

Some people blame the regulators for holding up the plants. Yet the NRC hasn’t been presented with any applications for new reactors and probably won’t be for years. Data from prototype plants would be helpful, but then many of the “new” designs are not so new at all. Sodium-cooled fast reactors have been built by countries including the U.S., Japan, Russia, Germany, France, and India since the 1950s, but no country has been able to make a plant cheap and reliable enough to even come close to being a viable energy source.

Yes, new nuclear technology can provide carbon-free electricity. But it has to do more than that. It has to be safe, secure, and resistant to proliferation. It has to compete in the marketplace. New nuclear designs are promising, but they’re no short-term solution to the climate problem.

Allison Macfarlane was the chairman of the Nuclear Regulatory Commission from 2012 to 2014.

Cut off? Read unlimited articles today.

Become an Insider
Already an Insider? Log in.

Uh oh–you've read all of your free articles for this month.

Insider Premium
$179.95/yr US PRICE

More from Sustainable Energy

Can we sustainably provide food, water, and energy to a growing population during a climate crisis?

Want more award-winning journalism? Subscribe and become an Insider.
  • Insider Premium {! insider.prices.premium !}*

    {! insider.display.menuOptionsLabel !}

    Our award winning magazine, unlimited access to our story archive, special discounts to MIT Technology Review Events, and exclusive content.

    See details+

    What's Included

    Bimonthly home delivery and unlimited 24/7 access to MIT Technology Review’s website.

    The Download. Our daily newsletter of what's important in technology and innovation.

    Access to the Magazine archive. Over 24,000 articles going back to 1899 at your fingertips.

    Special Discounts to select partner offerings

    Discount to MIT Technology Review events

    Ad-free web experience

    First Look. Exclusive early access to stories.

    Insider Conversations. Join in and ask questions as our editors talk to innovators from around the world.

  • Insider Plus {! insider.prices.plus !}* Best Value

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus ad-free web experience, select discounts to partner offerings and MIT Technology Review events

    See details+

    What's Included

    Bimonthly home delivery and unlimited 24/7 access to MIT Technology Review’s website.

    The Download. Our daily newsletter of what's important in technology and innovation.

    Access to the Magazine archive. Over 24,000 articles going back to 1899 at your fingertips.

    Special Discounts to select partner offerings

    Discount to MIT Technology Review events

    Ad-free web experience

  • Insider Basic {! insider.prices.basic !}*

    {! insider.display.menuOptionsLabel !}

    Six issues of our award winning magazine and daily delivery of The Download, our newsletter of what’s important in technology and innovation.

    See details+

    What's Included

    Bimonthly home delivery and unlimited 24/7 access to MIT Technology Review’s website.

    The Download. Our daily newsletter of what's important in technology and innovation.

/
You've read all of your free articles this month. This is your last free article this month. You've read of free articles this month. or  for unlimited online access.