Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Business Impact

New 3-D Printing Technique Makes Ceramic Parts

A new way of making these tough materials could be a key step in producing better airplane engines and long-lasting machine parts.

Left: In addition to printing individual parts, the process can yield lattices like this one, which can be flexed and twisted to make more complex shapes or to fit a surface such as an airplane wing.

Ceramics are some of the hardest materials on Earth. They can withstand extreme temperatures, and some are impervious to friction, scratching, and other mechanical stresses that wear out metal and plastic. But it can be difficult to make complex shapes out of the materials.

Chemical engineer Zak Eckel and group leader Tobias Schaedler.

Chemists at HRL Laboratories in Malibu, California, may have gotten around that problem by developing ceramics that can be made in a 3-D printer. The result: ultrastrong objects that are impossible to make using conventional methods.

This story is part of our May/June 2016 Issue
See the rest of the issue
Subscribe

Ceramics are used today in brake pads, the housing of microelectronics, and thermal shielding tiles (like the ones on spacecraft). Now the scientists at HRL are trying to substantially expand the applications. If parts for aircraft engines were made of ceramic, for example, the engines could run at a higher temperature, increasing their efficiency.
Ceramics could also offer an upgrade on parts used in steam turbines and other machines that must withstand searing, mechanically harsh conditions. The lab is co-owned by Boeing and General Motors, and the project has some funding from DARPA, the R&D arm of the U.S. Department of Defense.

Left: This beaker of resin contains polymer precursors that can be run through a 3-D printer to make objects. Right: In the printer, ultraviolet light strikes the resin, hardening it to build things one layer at a time.
After about 90 minutes of printing, this small part, an impeller, emerges from the resin bath. Impellers are used in steam turbines and other machinery that must weather wear and high temperatures.
Left: The printed part is treated in a furnace to bake the polymer and turn it into a ceramic. In the ­process, the part shrinks by about 30 percent. Right: Schaedler gets ready to pull the ceramic part out of the 1,000 °C furnace.
To test the material’s heat tolerance, HRL scientists put it under a torch of about 1,200 °C.

HRL’s trick is to formulate special resins that can be used as the ink in a printer. They are made out of polymers but carry in their molecular structure silicon and other elements found in ceramics. These resins are loaded into 3-D printers to make parts with baroque shapes, such as corkscrews and sheets of intricate lattices. Then those parts go into a furnace to bake out the organic polymer components, leaving behind ceramic material.

Larger pieces of printed ceramic mesh and lattice sheets like these could be used to shield spacecraft from extreme ­temperatures.

The 3-D-printed ceramics could be better in some respects than their conventional counterparts. One lattice made at HRL has 10 times the compressive strength of commercially available ceramics. These printed parts can also tolerate heats as high as 1,700 °C, a temperature at which other ceramics start to degrade.

But the group still hopes to make its printed ceramics stronger. One approach is to design new kinds of pre-ceramic polymers that have fibers embedded in them to stop cracks from spreading. Ceramics are brittle and can fail catastrophically with one crack. It wouldn’t do if a minuscule defect caused a clever new part to shatter.

Want to go ad free? No ad blockers needed.

Become an Insider
Already an Insider? Log in.
Chemical engineer Zak Eckel and group leader Tobias Schaedler.
After about 90 minutes of printing, this small part, an impeller, emerges from the resin bath. Impellers are used in steam turbines and other machinery that must weather wear and high temperatures.
Left: The printed part is treated in a furnace to bake the polymer and turn it into a ceramic. In the ­process, the part shrinks by about 30 percent. Right: Schaedler gets ready to pull the ceramic part out of the 1,000 °C furnace.
To test the material’s heat tolerance, HRL scientists put it under a torch of about 1,200 °C.
Larger pieces of printed ceramic mesh and lattice sheets like these could be used to shield spacecraft from extreme ­temperatures.
More from Business Impact

How technology advances are changing the economy and providing new opportunities in many industries.

Want more award-winning journalism? Subscribe and become an Insider.
  • Insider Plus {! insider.prices.plus !}* Best Value

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    What's Included

    Unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Bimonthly print magazine (6 issues per year)

    Bimonthly digital/PDF edition

    Access to the magazine PDF archive—thousands of articles going back to 1899 at your fingertips

    Special interest publications

    Discount to MIT Technology Review events

    Special discounts to select partner offerings

    Ad-free web experience

  • Insider Basic {! insider.prices.basic !}*

    {! insider.display.menuOptionsLabel !}

    Six issues of our award winning print magazine, unlimited online access plus The Download with the top tech stories delivered daily to your inbox.

    See details+

    What's Included

    Unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Bimonthly print magazine (6 issues per year)

  • Insider Online Only {! insider.prices.online !}*

    {! insider.display.menuOptionsLabel !}

    Unlimited online access including articles and video, plus The Download with the top tech stories delivered daily to your inbox.

    See details+

    What's Included

    Unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

/3
You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.