The Move That Shaped MIT

Moving to Cambridge from Copley Square didn’t just give the Institute more space. It transformed MIT into a world-class research university.

Apr 26, 2016

If MIT had not moved from Boston to Cambridge 100 years ago, the Institute as we know it would not exist. Had it remained in the Back Bay, which was already bursting at the seams, it faced almost certain stagnation—and it might not have survived at all. But the new campus, known as “New Technology,” did more than provide a bigger footprint with more classrooms and laboratories. The move also began MIT’s transformation from a pioneering and highly regarded school of engineering into an internationally renowned science-based research university.

William Barton Rogers had always expected that MIT would grow. In some of his earliest writings he boldly asserted that his proposed school would “expand into a great institution” and “soon overtop the universities of the land.” Following MIT’s incorporation in 1861 and his successful (if fraught) campaign to raise the $100,000 required by the state to begin building, Rogers had an architect design a vastly larger structure than might have been rationally justified. (There were 15 students at the start, but the main lecture hall was designed to accommodate 400.) As it turned out, Rogers had been right to be so ambitious. Over the next half-­century, MIT grew rapidly. By the turn of the century, enrollment had swelled to nearly 1,300 students.

Its 1861 charter gave MIT “one certain square of state land” on the “second square westwardly from the public garden,” on which the five-story Rogers Building was built. Filled with labs and lecture halls, it opened in relative isolation in 1866.

Boston had also grown. The city’s population nearly quadrupled from 177,840 in 1860 to 670,585 in 1910. Once a marsh on the outskirts of Boston, the Back Bay was by then completely filled in—and filled up with homes and businesses. Copley Square had become the intellectual hub of the city, home to MIT, the Boston Society of Natural History, the Museum of Fine Arts, the Boston Public Library, Harvard Medical School, Trinity Church, and Old South Church. Yet by 1900, most of these institutions were facing severe space constraints, perhaps none more so than MIT.

Beyond dealing with overcrowding and general building deterioration, MIT also faced the more fundamental challenge of major new developments in science and technology. Consider that when classes began in 1865, the atom was a provisional concept, Mendeleev was still formulating his periodic “system,” and Maxwell’s equations and Darwin’s ideas about evolution were brand new. Half a century later, these advances had all been incorporated into the curriculum. Meanwhile, a remarkable new era in physics had unfolded, introducing such concepts as radiation, relativity, and quantum theory. Electrical engineering had also taken off, and aeronautical and chemical engineering were exciting new disciplines that hadn’t existed when MIT was founded.

Teaching all this required different kinds of classrooms and more labs. At the same time, some faculty members were doing significant research in support of industry and government, which added to the demand for lab space. MIT had also begun offering graduate courses; by 1908, when it awarded its first PhD degrees, 189 students were pursuing graduate studies. But space constraints limited the Institute’s ability to accommodate graduate work. It was also clear that some new research projects required specialized equipment, such as wind tunnels and tow tanks, that would impose still more space demands.

By 1905, Copley Square had become Boston’s intellectual hub, also housing the Museum of Fine Arts, the Boston Public Library, and Harvard Medical School. With its eight buildings filled to capacity, MIT had no room to grow in the Back Bay.
First-year mechanical engineering classes such as this one, in the Forge Shop on Garrison Street in 1896, provided “practical instruction in the nature of the materials of construction.”
In the Walker Building on Boylston Street, the physics lecture hall (shown here) could seat 296, but even that was inadequate by the 1890s. It was a “great embarrassment” that the Institute lacked sufficient lab space and equipment to serve all its students.
In addition to getting hands-on experience in labs and shops, students attended many lectures; drawing was also considered an essential part of the curriculum.
MIT’s second building, located on Boylston Street in Boston next to the Rogers Building , was constructed in 1883 and named in 1891 for MIT’s second president, Francis Amasa Walker. This picture was taken in the 1890s.
In 1876 in a small one-story building adjacent to MIT’s main building, faculty member Ellen Swallow Richards, Class of 1873, and the Women’s Education Association of Boston opened the Women’s Laboratory to offer courses and laboratory facilities to women who wished to study chemistry and mineralogy. When the lab was closed in 1883, women were integrated into the regular program at the Institute.
MIT on Boylston Street in 1903. (Walker Building on the left; Rogers Building on the right.)

These challenges had seemed so insurmountable to MIT’s fifth president, Henry Pritchett, that he and the MIT Corporation thought merging with Harvard University was the only viable solution, despite vehement opposition from alumni and faculty. But the plan to transform MIT into Harvard’s new school of engineering was scuttled when the Massachusetts Supreme Judicial Court ruled in September 1905 that under the terms of its charter from the state, MIT could not sell its Boylston Street property to pay for new Harvard engineering facilities in Allston. Having failed in this effort, Pritchett offered his resignation in 1906.

It was a perilous moment. Although the debate about the merger had clarified MIT’s priorities, the Institute was short on money as well as space. MIT depended on tuition for most of its income. Almost every year since its founding, it had run a deficit, which placed real limits on salary increases and precluded building a dormitory and other facilities conducive to student life. In his President’s Report of 1907, acting president Arthur Noyes despaired that raising tuition had the effect of “shutting out a large group of promising young men.”

The Corporation had great difficulty convincing anyone to take on the many challenges of leading the Institute. At a February 1908 dinner at the Manhattan home of Columbia professor Ernest Fox Nichols, MIT found its man. The guest of honor, Richard Cockburn Maclaurin, had just taken a post as a physics professor at Columbia, having moved his family from New Zealand to New York. Only 37, he was brilliant, broadly educated, and, to the chagrin of Columbia’s president, ready to move beyond physics. His compelling ideas about higher education prompted dinner guests from MIT to immediately recommend him to Noyes. Maclaurin became the unanimous choice of the Executive Committee of the MIT Corporation, which that November offered him the presidency and an invitation to “think Technology, work Technology, dream Technology.”

Even before his inauguration in May 1909, Maclaurin knew that MIT had to move. “In every case where an institution has outgrown its equipment, a change to a new site and new buildings has been a turning point in its career,” he told reporters when his appointment was announced. “Such a change has often converted a comparatively obscure institution … into an important one.”

John Ripley Freeman’s comprehensive plan for MIT’s new campus included many drawings and plans of the site and its buildings. Inspired by efficiency studies of factories, he proposed a single massive structure of reinforced concrete. This 1912 drawing shows how such a building might fit on the new site. With neighboring factory buildings and the subway station students would use drawn in, it represents the first time anyone looked at MIT in the larger geographic context.
Color-wash presentation drawing by William Welles Bosworth, 1913. President Richard Maclaurin revealed Bosworth’s initial plans for the new campus in November 1913.
Looking south across the construction site, fall 1913. The first step was to add fill to the land and build the five rail spurs that would bring in an estimated 10,000 carloads of building materials for the project.
By November 1915, exterior construction of “New Tech” was nearly complete. The project was well over budget, so there had been serious discussion about eliminating the dome and the limestone façade. The dome was preserved, but this rear view of MIT’s yellow-brick exterior shows what the front might have looked like without limestone.
Building 3 housed the Departments of Civil Engineering and Naval Architecture. This floor had two large rooms for drafting instruction, with more than 200 large work tables, each with its own electrical outlet planned.
Once the foundations were completed in late summer 1914, the new MIT buildings began to rise at an average rate of a foot per day from October 1 until completion on December 1, 1914. The limestone began to be installed in November 1914. The use of reinforced concrete allowed for a wall of windows as well as completely flexible interiors. This was one of John Ripley Freeman’s most important contributions to the design of the new campus.
Construction of Building 1 (then Buildings 1 and 3) from Memorial Drive, January 14, 1915.
Groundbreaking, September 15, 1913. The official construction progress shot caption is: “Looking North from S.E. corner of site, showing first operation of steam shovel.”
Aerial shot of new campus, 1917. The U.S. entry into World War I brought immediate changes to campus, including the construction of several temporary buildings to serve the several thousand soldiers who would come to MIT for special training and instruction.

Between 1909 and 1916, Maclaurin tirelessly led the process of imagining a “New Technology.” He started by working with the Corporation, faculty, and alumni to define the goals—ample space for labs and teaching, flexibility to accommodate curriculum expansion and new research, and dormitories, athletic facilities, and social spaces to promote a more well-rounded education. After considering 23 potential sites, he zeroed in on vacant land across the Charles that he had spied during his very first visit to Cambridge in 1908.

Then there was the matter of finding a way to pay for it all. In October 1911, MIT inked a deal for the land for $750,000, mainly using a $500,000 gift from industrialist Coleman du Pont, Class of 1884. But building on that land would require a major investment. In 1912, Maclaurin met with Eastman Kodak founder George Eastman—long an admirer of MIT, the alma mater of several of his top employees. One week later, Eastman pledged “two and one-half millions of dollars” for construction of the new campus. It was time to move from dreaming about the New Technology to designing and building it.

Determined to make the best use of the new space, Maclaurin tapped into the MIT community’s expertise. Alumnus and civil engineering pioneer John ­Ripley Freeman proposed a radical design, based on his study of European universities and American factories, that emphasized flexibility and sited departments in adjoining spaces instead of separate buildings. Maclaurin prized Freeman’s exhaustively researched ideas about functionality, but he also wanted the face of the new campus to reflect the importance of the Institute’s work. The ultimate design melded ­Freeman’s functional vision with the equally compelling vision of architect William Welles Bosworth, another alumnus. Crucial to this effort was the creative design work of two more alumni, Charles Stone and Edwin Webster. Their firm, Stone & Webster, built the new campus, and its engineers worked out the countless details and the not insignificant engineering challenges required to marry the ideas of Freeman and Bosworth, divvy up the interior space among departments, and build and equip what was then one of the world’s largest concrete structures.

Construction got under way in 1913, and in June of 1916, MIT celebrated the nearly completed campus with three days of dedication events that received international press attention. Highlights included 

a water “fête,” a huge open house (with the first public display of the Wright Brothers’ 1903 Flyer), a pageant with a cast of more than 1,000, and a banquet attended in person by Orville Wright and ­Alexander Graham Bell—and virtually by alumni in 34 cities through a special telephone hookup arranged by American Telephone and Telegraph. (It took more than 300 pages in the July 1916 issue of Technology Review to describe it all.)

As part of the dedication ceremonies, students playing the role of “Pyrrhic Dancers of Warfare” took part in the Technology Pageant on June 13, 1916.
A barge modeled after a 15th-century Venetian vessel transported MIT’s charter and seal across the Charles River as part of the pageant. The figurehead of “Technology enlightening the world” held a T-square and a torch.
On June 14, 1916, thousands gathered for the dedication led by President Maclaurin. Governor Samuel McCall and Senator Henry Cabot Lodge also spoke.
The spacious new Laboratory of Applied Heat was equipped with electric heaters to maintain an even temperature for experiments.
The Analytical Chemistry Laboratory—like all new chemical labs—had hoods and mushroom ventilators at each desk.
Students study alternating current and direct current under different conditions in the new Electrical Lab. Technology Review ran this photo in 1919, noting: “It is advisable [that a student] perform in the laboratory various experiments which shall bring to him personal experience with the study and measurement of electrical phenomena.”
By the fall of 1916, all departments except architecture were in Cambridge. “New Technology” had become simply the Massachusetts Institute of Technology.
MIT’s first student dormitory (today known as Senior House) was completed in 1918. William Welles Bosworth’s vision for the campus included both academic and residential components. The President’s House (today Gray House) and the dormitory building were the first to be constructed. The dormitory comprised six separate entities known as Ware, Atkinson, Runkle, Holman, Nichols, and Crafts. Each had its own entrance and floor plan. The two end “entries” housed two fraternities. The other four were used for undergraduates. When the building opened it could house only 11 percent of the undergraduate student body (a survey showed that at least 40 percent wanted to live on campus), a tiny fraction of what President Maclaurin hoped for.

“The engineer or architect of the future must be far more than a technical expert,” President Maclaurin wrote in his letter to students published in the 1918 Technique. “He must be, in the best sense, a man of the world with a knowledge of and sympathy with his fellow men and with the power to cope with the innumerable human problems that present themselves in modern industry. It is fitting, therefore, that in the New Technology far more attention should be paid, than in the old, to the social life of the student.”
Many alumni who couldn’t travel to Cambridge for the dedication of New Tech were able to listen in at the telephone banquets organized by MIT Clubs in 34 cities around the country. This picture shows the MIT Pittsburgh Association.
At the head of the academic procession for the new buildings’ official dedication ceremony were (left to right) U.S. Senator Henry Cabot Lodge, Massachusetts governor Samuel Walker McCall, President Richard Cockburn Maclaurin, and Charles A. Stone, MIT Class of 1888 and president of the MIT Alumni Association.

Classes began on campus that fall, and as Maclaurin had hoped, MIT’s graceful dome and Beaux-Arts façade projected the importance of science and technology in modern life. The design of the new campus would have a profound impact on the Institute’s evolving culture. New Technology’s flexible academic spaces, its interconnected corridors, and the close proximity of the departments would foster interdisciplinary work and encourage a new and special kind of intellectual entrepreneurialism. The buildings’ ready adaptability to changing priorities would force faculty to demonstrate that their work—and use of space—was “MIT-worthy,” pushing them to focus on solving important problems.

In the end, the move reinvigorated and enlarged William Barton Rogers’s vision of a practical education combining laboratory and lecture hall. MIT’s new aim was to “strengthen American industry at the base by fixing it firmly on the solid rock of science,” Maclaurin said at the dedication. “Our prosperity as a nation, perhaps even our very existence, must depend on the extent to which we assimilate this doctrine.” 

Maclaurin had begun his tenure at MIT by observing: “A bold policy, a courageous policy of trust in the future, is the wise one. To advance rapidly, an institution must not be afraid of its own development.” Having been bold, he stood before the crowds gathered in 1916 to dedicate “a noble group of buildings to a noble purpose,” and ushered in a new era for MIT.

Deborah G. Douglas, director of collections and curator of science and technology at the MIT Museum, curated the exhibit “Imagining New Technology: Building MIT in Cambridge,” which is at the MIT Museum through August 2016.