A View from Ashutosh Saxena

Wikipedia for Robots

People have learned to pool their knowledge. We need to help machines do the same.

  • February 23, 2016

Humans have gained a lot of value by organizing all their knowledge and making it widely accessible—in textbooks, libraries, Wikipedia, and YouTube, to name a few examples. These pools of knowledge aren’t valuable just for grand scientific ventures but also for the trivial stuff of everyday human lives: you can easily find thousands of YouTube videos that will teach you how to cook an omelet.

Ashutosh Saxena

We now live in a world where robots are helping humans in their daily lives, and just like humans, robots need to learn new skills in order to do their jobs successfully. And we shouldn’t expect a robot to learn on its own from scratch, any more than we’d expect a human to do so—imagine a child growing up with no access to textbooks, libraries, or the Internet.

This story is part of our March/April 2016 Issue
See the rest of the issue
Subscribe

However, the organized collections of knowledge that work for humans aren’t so great for robots. A robot wouldn’t get much useful information if it queried a search engine for how to “bring sweet tea from the kitchen.” Robots require something different—access to finer details for planning, control, and natural language understanding. When asked to bring sweet tea, the robot would need access to the knowledge for interpreting the language symbols (“tea”) in terms of physical entities (“a particular container having sweet tea”), the spatial knowledge that sweet tea can be either on a table or in a fridge, and the knowledge for inferring how to grasp and manipulate objects. It’s possible to manually script a demo for one particular situation, but handling this across different tasks and in different environments is still an open problem.

In 2014, I started a project called RoboBrain at Cornell University along with PhD students Ashesh Jain and Ozan Sener. We now have collaborators at Stanford and Brown. What we’re working on is a way of sharing information that allows robots to gather whatever knowledge they need for a task (see “Robots That Teach Each Other”). If one robot learns, then the knowledge is propagated to all the robots. RoboBrain achieves this by gathering the knowledge from a variety of sources. The system stores multiple kinds of information, including symbols, natural language, visual or shape features, haptic properties, and motions.

This approach represents a huge shift in thinking. Historically, research groups working with robots have trained their robots in isolation. Yes, we often share ideas through publications and software that can be used by another research group, but what one robot might learn hasn’t been accessible to another researcher’s robot. To add to the problem, research groups have been working on different problems—one might have focused on the computer vision problem of identifying a cup, while another worked on the language problem of what is a “cup,” while a third tackled how to grasp a cup.

That’s the kind of approach we need to get past. A cup is one object, not three. And a robot, just like a person, needs to be able to have all the knowledge it needs in one place.

Ashutosh Saxena is the director of the RoboBrain project and the founder and CEO of the startup Brain of Things.

Get stories like this before anyone else with First Look.

Subscribe today
Already a Premium subscriber? Log in.
Ashutosh Saxena

Uh oh–you've read all of your free articles for this month.

Insider Premium
$179.95/yr US PRICE

More from Intelligent Machines

Artificial intelligence and robots are transforming how we work and live.

Want more award-winning journalism? Subscribe to Insider Premium.
  • Insider Premium {! insider.prices.premium !}*

    {! insider.display.menuOptionsLabel !}

    Our award winning magazine, unlimited access to our story archive, special discounts to MIT Technology Review Events, and exclusive content.

    See details+

    What's Included

    Bimonthly home delivery and unlimited 24/7 access to MIT Technology Review’s website.

    The Download. Our daily newsletter of what's important in technology and innovation.

    Access to the Magazine archive. Over 24,000 articles going back to 1899 at your fingertips.

    Special Discounts to select partner offerings

    Discount to MIT Technology Review events

    Ad-free web experience

    First Look. Exclusive early access to stories.

    Insider Conversations. Listen in as our editors talk to innovators from around the world.

/
You've read all of your free articles this month. This is your last free article this month. You've read of free articles this month. or  for unlimited online access.