Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Sustainable Energy

DOE Attempts to Jump-Start Concentrated Solar

Researchers seek breakthroughs for a technology designed to make solar more efficient.

Conventional solar power remains too inefficient to compete with fossil fuels.

Attempting to jump-start research on novel solar technology, the U.S. Department of Energy’s Advanced Research Projects Agency–Energy (ARPA-E) on Monday announced new funding for concentrated solar photovoltaic projects. Awarded under ARPA-E’s Micro-scale Optimized Solar-cell Arrays with Integrated Concentration (MOSAIC) program, the money will go to 11 projects at 10 organizations, including MIT, Xerox PARC, Texas A&M, and the solar manufacturer Semprius.

Concentrated PV (or CPV), which uses lenses and mirrors to focus the sun’s rays on tiny PV cells, could dramatically increase the efficiency and lower the cost of producing electricity from sunlight. MOSAIC’s goal is to “double the amount of energy each solar panel can produce from the sun, while reducing costs and the space required to generate solar energy.”

During the solar boom of 2005 to 2008, several startups developing CPV systems received federal government support and funding from venture capital firms, only to collapse when low-cost Chinese manufacturers drove down the cost of conventional solar panels (see “One Step Forward, One Step Back for Concentrated PV” and “Will a Breakthrough Solar Technology See the Light of Day?”). Today, CPV remains too expensive and complicated to replace conventional solar installations on a widespread basis.

Although the efficiency of conventional solar PV has increased and costs have fallen dramatically in the last several years, solar power generation remains generally more expensive than producing electricity with low-cost fossil-fuel plants. The efficiency of conventional solar PV panels (in terms of the portion of energy in sunlight converted to electricity) lingers below 20 percent. CPV systems already achieve efficiencies of 30 percent, and promise much higher.

The MOSAIC projects differ from earlier concentrated PV technologies in that the tiny arrays that concentrate the sunlight are built into traditional flat panels. The description of one of the funded projects, at MIT, gives a sense of the complexity of the technology: the system comprises two micro-tracking systems—one that involves a double array of micro-optics, and a second that rotates and tilts the entire apparatus.

One limitation of CPV has been that it traditionally works only in areas of high solar irradiation—i.e., desert regions like the American Southwest—and requires expensive solar tracking mechanisms to keep the arrays pointed directly at the sun. Several of the MOSAIC projects are attempting to overcome those barriers. A team at Caltech, for instance, is developing a technology that it says will offer efficiencies of more than 30 percent and operate in less than ideal locations, without tracking the sun.

“Increasing efficiency by this amount is transformative,” says Harry Atwater, the principal investigator on the Caltech research effort.

Get stories like this before anyone else with First Look.

Subscribe today
Already a Premium subscriber? Log in.

Uh oh–you've read all of your free articles for this month.

Insider Premium
$179.95/yr US PRICE

More from Sustainable Energy

Can we sustainably provide food, water, and energy to a growing population during a climate crisis?

Want more award-winning journalism? Subscribe to Insider Plus.
  • Insider Plus {! insider.prices.plus !}*

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    What's Included

    Unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Bimonthly print magazine (6 issues per year)

    Bimonthly digital/PDF edition

    Access to the magazine PDF archive—thousands of articles going back to 1899 at your fingertips

    Special interest publications

    Discount to MIT Technology Review events

    Special discounts to select partner offerings

    Ad-free web experience

/
You've read all of your free articles this month. This is your last free article this month. You've read of free articles this month. or  for unlimited online access.