We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Device Squeezes Cells to Get Drugs In

A new way to get materials into cells might clear the way for powerful treatments for diseases like cancer and HIV.

8.2 million people died of cancer in 2012.

Several potentially transformative treatments for cancer and HIV face a common obstacle—getting drugs into cells, which are designed to reject foreign materials.

A cell approaches a constriction in a microfluidic channel. Once it reaches the constriction, it’s stretched out and becomes temporarily permeable.

A new microfluidic device, recently developed by a startup called SQZ Biotech, can get microscopic material into cells quickly and cheaply by vigorously squeezing those cells, temporarily making their membranes permeable.

Though the technology is only a research tool now, it might be just what’s needed to bring some promising new cancer and HIV therapies to patients. It could be used in a type of treatment that’s just starting to take off, called immunotherapy, which involves modifying a person’s immune cells to effectively target diseases such as cancer (see “The Revival of Cancer Immunotherapy”). Immunotherapy typically requires getting proteins or genetic material into the cells, often by drawing blood and modifying the cells outside of the body, then injecting them back into the patient.

SQZ says it may be able to significantly cut the costs of immunotherapy and improve its effectiveness, factors that have prevented the approach from being commercialized. Just last month, one of the pioneers in immunotherapy, Dendreon, declared bankruptcy after its high-cost treatment failed to sell quickly enough.

“SQZ’s system has shown that it can deliver many materials, such as proteins, small molecules, and RNA, to immune cells more efficiently and with less toxicity than existing technologies,” says Robert Langer, a professor at MIT and an SQZ board member.

Other delivery options for immunotherapy are applying an electric field or using a virus to introduce genetic material into cells, which then triggers the cells to make proteins. But these indirect approaches can be slow and costly. The new device works in seconds and is small enough to be used bedside in hospitals, says SQZ, which was founded in 2013.

To use the device, researchers draw blood from a subject, then extract white blood cells and deposit them into a reservoir in the device along with whatever substance they want to introduce into the cells. A pump forces the blood cells through 75 microscopic channels. Midway through the channel the cells reach a constriction that squeezes them and forces them to stretch out, allowing the substance to be pushed in.

The key to introducing materials is forcing the cells through the constriction fast enough that their ordinary defense mechanisms have no time to react, says Jonathan Gilbert, a former MIT researcher and currently the business development manager of SQZ. That leaves the cell membranes temporarily permeable, allowing proteins and other molecules to enter the cell. Treated cells are then injected back into the subject (typically a mouse, for now).

SQZ’s devices are currently being used by a number of biologists, and the company is in the early stages of testing it for use with experimental treatments. One approach would be to use it to introduce cancer-related proteins into immune cells. Doing this triggers a stronger-than-normal immune response. Researchers have shown that such immune responses can shrink tumors.

AI is here.
Own what happens next at EmTech Digital 2019.

Register now
Want more award-winning journalism? Subscribe to Insider Plus.
  • Insider Plus {! insider.prices.plus !}*

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    Print + Digital Magazine (6 bi-monthly issues)

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

    Technology Review PDF magazine archive, including articles, images, and covers dating back to 1899

    10% Discount to MIT Technology Review events and MIT Press

    Ad-free website experience

You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.