Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Cheap and Nearly Unbreakable Sapphire Screens Come into View

Apple may soon start selling scratch-proof iPhones with sapphire screens. Here’s how to bring sapphire to almost all portable electronics.

Smartphone screens are easy to scratch and crack, and are costly to replace.

This fall, rumor has it, Apple will start selling iPhones with a sapphire screen that is just about impossible to scratch.

Crystal clear: The disc in the center of this specially designed oven is a sheet of sapphire thinner than a human hair. It was made from the thicker wafer of unpolished sapphire seen next to it.

The supposed supplier of that sapphire, GT Advanced Technologies, can’t confirm as much. But this week the company showed me a new manufacturing process that produces inexpensive sheets of sapphire roughly half as thick as a human hair, making it possible to add a tough layer of sapphire to just about any smartphone or tablet screen relatively cheaply (see “Your Next Smartphone Screen May Be Made of Sapphire”). The manufacturing technology, known as an ion accelerator, can make fine sheets of other costly materials, so it could also lead to better and cheaper electronics and solar cells.   

Sapphire, or crystalline aluminum oxide, is made in nature but can also be manufactured. It is second only to diamond in hardness, although incorrect processing can leave defects that make it brittle. Because of its scratch-proof properties, it has long been used for making LEDs, sensors on missiles, and the screens on some high-end phones that cost as much as $10,000.

But sapphire has been too expensive for widespread use. A screen made entirely out of sapphire, as the forthcoming iPhone’s may be, remains five times as expensive as a regular one, or $15 to $20 each. But laminating glass with sapphire could bring the cost down to $6, according to estimates by Eric Virey, an analyst for the market research firm Yole Développement.

Smartphone makers have long taken advantage of advances in glass production to make devices with stronger and more durable screens. The most well-known of these screens is made from Corning’s Gorilla Glass, which is used in iPhones. But even Gorilla Glass is vulnerable to scratching and cracking, and replacing the glass is expensive.

The conventional approach to making sheets of sapphire is to saw a large crystal of the material—say 40 centimeters across—into wafers a few hundred micrometers thick. These wafers can then be made thinner, but that requires more sawing, and then grinding the sapphire down, which wastes huge amounts of sapphire.

GT uses a different approach in its new machine, which is the size of a concrete-mixing truck and operates in its labs in Danvers, Massachusetts. The machine shoots hydrogen ions at a wafer of sapphire, implanting the ions to a depth of 26 micrometers. The wafer can then be removed and heated up so that the hydrogen ions form hydrogen gas, which expands and causes a 26-micrometer-thick layer of sapphire to lift off.

Ted Smick, vice president of equipment engineering at GT, says the next step is to engineer a system to automate the handling of sapphire wafers in a way that makes sapphire sheets at a fast rate. He estimates that designing and implementing such a process will take about nine months.

Get stories like this before anyone else with First Look.

Subscribe today
Already a Premium subscriber? Log in.

Uh oh–you've read all of your free articles for this month.

Insider Premium
$179.95/yr US PRICE

Want more award-winning journalism? Subscribe to Insider Plus.
  • Insider Plus {! insider.prices.plus !}*

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    What's Included

    Unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Bimonthly print magazine (6 issues per year)

    Bimonthly digital/PDF edition

    Access to the magazine PDF archive—thousands of articles going back to 1899 at your fingertips

    Special interest publications

    Discount to MIT Technology Review events

    Special discounts to select partner offerings

    Ad-free web experience

/
You've read all of your free articles this month. This is your last free article this month. You've read of free articles this month. or  for unlimited online access.