We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not a subscriber? Subscribe now for unlimited access to online articles.

Business Impact

Unsubscribing? The New York Times Wants to Predict That.

In danger of being left behind on the Web, big publishers jump on the data science bandwagon.

The success of many companies increasingly depends on how wisely they can mine data about their customers’ behavior and respond accordingly.

This month the New York Times launched a new personal-technology column with the clever title “Machine Learning.” But behind the scenes, the newspaper is also doing real machine learning, and for a very serious purpose: it wants to predict who is going to unsubscribe before it happens.

Data-driven: The New York Times Company headquarters in Manhattan.

The Times has hired Columbia University applied mathematician Chris Wiggins as its first “chief data scientist.” Wiggins, who has built predictive computer models to determine the origin of viruses, will now lead a small group that tries to use mathematics to help the 162-year-old publisher maintain or expand its subscriber base.

Wiggins says he took the part-time job because he’s a big fan of the publication and wants to help keep its 1,200 editors and reporters in their jobs. He thinks data science can help with “a business model that has been severely disrupted.”

The problem is that advertisers are buying fewer newspaper ads. U.S. newspapers’ print ad sales collapsed from $47 billion in 2005 to $19 billion in 2012, according to Pew’s State of the News Media report. Online advertising hasn’t come close to making up the shortfall.

In response, the Times is depending more on subscriptions. It has raised the cost of the printed paper and is selling digital subscriptions with the help of its digital paywall, launched nearly three years ago with significant success. In reporting otherwise glum yearly results this February, the company said it had seen a 19 percent increase in digital-only subscribers during 2013.

Marc Frons, chief information officer of the New York Times Company, which employs about 500 people in IT, technology, and programming, says that a year ago the company pulled together information that had been in “various silos” and formed a business intelligence group to start exploiting it. It’s part of a wider trend in which companies are using data to guide business decisions more directly (see our report “Data and Decision Making.”)

Wiggins will head a team of three or four people with a mandate to experiment and to determine whether the Times’ business problems can be solved with machine learning, a set of statistical methods that use existing data to make predictions about similar situations.

The Times doesn’t lack for data—its readers make nine million visits a day to its home page. “But we really needed someone to give us insights about why people subscribe and how to retain them,” says Frons. “Before they pick up the phone and say ‘I want to cancel,’ you could predict by the patterns of their behavior, like not logging in as much, that they might do that.”

The Times’ effort is still relatively modest in scope, at least compared with those of the largest Web companies. Google this year spent $400 million to acquire a single machine-learning startup (see “Is Google Cornering the Market on Deep Learning?”), and Amazon is currently advertising positions for 40 machine-learning scientists—in addition to scores it already employs.

What’s notable is how traditional media organizations are catching up. In October, News Corp., publisher of the Wall Street Journal, hired Rachel Schutt, another Columbia statistician specializing in networks, as senior vice president for data science. That’s also a newly created role. Schutt wrote in an e-mail that she’s going to be a “centralizing force” for “a number of machine learning and predictive modeling projects” that were already under way.

Big publishers are also looking to keep pace with media startups, some of which have been hiring Wiggins’s students. Websites such as BuzzFeed, publisher of a mix of silly and serious news, have shown that mathematical modeling can help increase stories’ “virality”—a measure of how widely the content gets shared online. Sites like BuzzFeed and the Huffington Post now get more page views than the New York Times, but with far smaller staffs.

For its part, the Times says it’s not after anything so crass as more page views. “Something on BuzzFeed that goes viral, and gets a lot of clicks, is different than the relationship that the New York Times is hoping for and building its business around,” says Wiggins. “It’s really putting subscriptions, rather than stories going viral, at the center of their model.”

Learn from the humans leading the way in machine learning at EmTech Next. Register Today!
June 11-12, 2019
Cambridge, MA

Register now
More from Business Impact

How technology advances are changing the economy and providing new opportunities in many industries.

Want more award-winning journalism? Subscribe to All Access Digital.
  • All Access Digital {! insider.prices.digital !}*

    {! insider.display.menuOptionsLabel !}

    The digital magazine, plus unlimited site access, our online archive, and The Download delivered to your email in-box each weekday.

    See details+

    12-month subscription

    Unlimited access to all our daily online news and feature stories

    Digital magazine (6 bi-monthly issues)

    Access to entire PDF magazine archive dating back to 1899

    The Download: newsletter delivery each weekday to your inbox

You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.