We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Sustainable Energy

How Toyota Will Be First With a Fuel-Cell Car

Toyota says it has reduced the cost of fuel cells significantly enough to sell hydrogen cars for under $100,000.

Hydrogen cars could greatly reduce greenhouse gas emissions. They emit no carbon dioxide or any other pollution from their tailpipes.

Toyota says it’s made several advances to hydrogen fuel cells that will make them significantly cheaper, and will allow the company to sell a car using the low-pollution technology in 2015—years before its competitors.

blue sporty hydrogen toyota
Hydrogen concept: Toyota plans to display this new hydrogen fuel-cell concept car at the Tokyo Motor Show.

The car will be expensive: between $50,000 and $100,000. But that’s a big improvement over the million-dollar cost of experimental fuel-cell vehicles in years past.

Toyota will display a concept version of the car—featuring a fuel cell instead of an engine—this month at the Tokyo Motor Show. While the concept car might not outwardly resemble the final car, the fuel-cell system inside will be worth looking at because it will likely be similar to the one in the production version. Toyota says the fuel-cell system is smaller and uses much less of an expensive ingredient—platinum—than earlier versions.

Like a battery, a fuel cell produces electricity. But unlike a battery, it is fed by a tank of hydrogen. Inside the fuel cell, platinum serves as a catalyst that facilitates reactions between the hydrogen and oxygen, producing electricity that powers the car and water vapor that comes out of the tailpipe. And while batteries in electric vehicles can take hours to recharge, a hydrogen tank can be refilled in about the time it takes to fill a conventional gas tank.

However, that advantage is limited for now because there aren’t many places to refuel a hydrogen vehicle. Other automakers, including General Motors, plan to sell fuel-cell vehicles starting around 2020, when costs will likely have come down still more, and when there could be more places to refuel. Several governments are funding hydrogen fueling stations.

Although there are still challenges to making fuel cells for mass-market vehicles, automakers say they could eventually go a long way toward meeting ever-stricter fuel economy and greenhouse gas regulations around the world, as well as requirements that a growing fraction of the cars they sell in places such as California emit no pollution from their tailpipes. Fuel-cell vehicles might be more attractive than battery-powered vehicles because, in addition to faster refueling times, they typically have a longer driving range (see “Why Toyota and GM Are Pushing Fuel-Cell Cars to Market” and “Ford, Daimler, and Nissan Commit to Fuel Cells”).

Fuel-cell vehicles could also let consumers take advantage of cheap natural gas in places such as the United States, since natural gas is the least expensive source of hydrogen. While producing hydrogen from natural gas releases carbon dioxide, the emissions would still be about half as much as those from gasoline-powered cars today.

Toyota has significantly decreased the amount of platinum needed in fuel cells and could ultimately get the amount down to a level that’s comparable to what cars already have in their catalytic converters, says Justin Ward, general manager of powertrain system control at the Toyota Technical Center in Gardena, California. Fuel-cell vehicles won’t need catalytic converters because they don’t emit pollutants.

Toyota reduced the amount of platinum by modifying the catalyst to make it more effective (the company isn’t saying exactly how) and by developing precise equipment for applying the catalyst to ensure that none is wasted. “Years ago we were literally taking spatulas and applying the platinum,” Ward says.

Another reason the system is cheaper is that it requires fewer fuel cells to be stacked together than previous concept cars did. Toyota accomplished this in part by improving the design of the cell. The electricity-generating reactions inside the cell take place at two electrodes separated by a membrane that allows hydrogen ions to pass from one side of the cell to the other. Toyota engineers modified the membrane to allow protons to pass more freely, which increases the amount of power that each fuel cell can generate.

Toyota is extending the cars’ range between fill-ups by borrowing technology from its hybrid vehicles. Fuel cells, like conventional engines, are at their most efficient when they run at a steady rate, rather than quickly increasing or decreasing power output during acceleration and braking. So Toyota is adding a battery to the hydrogen car to provide boosts of power for acceleration, reducing the strain on the fuel cell.

Tech Obsessive?
Become an Insider to get the story behind the story — and before anyone else.

Subscribe today
More from Sustainable Energy

Can we sustainably provide food, water, and energy to a growing population during a climate crisis?

Want more award-winning journalism? Subscribe to Insider Plus.
  • Insider Plus {! insider.prices.plus !}*

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    Print + Digital Magazine (6 bi-monthly issues)

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

    Technology Review PDF magazine archive, including articles, images, and covers dating back to 1899

    10% Discount to MIT Technology Review events and MIT Press

    Ad-free website experience

You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.