Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Susan Young Rojahn

A View from Susan Young Rojahn

Bacteria-killing Viruses Could Make Medical Implants Safer

Researchers attach “viral hitmen” to surfaces to demonstrate a possible antibacterial defense for catheters and other medical devices.

  • May 10, 2013

Medical implants like catheters and pacemakers can be a hotspot for bacteria, which grow in hard-to-treat films on the surface of such devices. Scientists and engineers are taking different approaches to changing the surface of implants so bacteria can’t take hold. For example, some groups are developing polymer films with structures that prevent bacterial growth (see “Pillowy Antibacterial Polymers”), while others are developing coatings that slowly release antibiotic compounds over time (see “Safer Joint Replacements” and “Innovators Under 35, 2007: Christopher Loose”). And now, researchers from Clemson University in South Carolina and the University of Southern Mississippi have described how a layer of bacteria-killing viruses could help prevent bacterial infections.

In a study published in Biomacromolecules, the investigators describe a new method for attaching bacteria-busting viruses, also known as bacteriophages, to plastic and Teflon-type materials. When a bacterium gets too close to these enemy-coated surfaces, a tethered bacteriophage can grab on and inject its genetic material into the bacterial cell where it is copied and turned into many more bacteriophage. Eventually, these virus copies burst open the bacteria, killing it. Each newly freed bacteriophage can then go on to infect more bacteria (the authors note that this “amplification effect” could make it hard to control the population size of the bacteria killers).

The researchers show that E. coli and the species of bacteria that causes staph infections can both be killed by tethered bacteriophages. The team writes that their method could work with almost any surface, and add that beyond fighting infections, their idea could also be used as a “technological platform for the development of bacteria sensing and detecting devices.”

Tech Obsessive?
Become an Insider to get the story behind the story — and before anyone else.

Subscribe today

Uh oh–you've read all of your free articles for this month.

Insider Premium
$179.95/yr US PRICE

More from Rewriting Life

Reprogramming our bodies to make us healthier.

Want more award-winning journalism? Subscribe to Insider Plus.
  • Insider Plus {! insider.prices.plus !}*

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    What's Included

    Unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Bimonthly print magazine (6 issues per year)

    Bimonthly digital/PDF edition

    Access to the magazine PDF archive—thousands of articles going back to 1899 at your fingertips

    Special interest publications

    Discount to MIT Technology Review events

    Special discounts to select partner offerings

    Ad-free web experience

/
You've read all of your free articles this month. This is your last free article this month. You've read of free articles this month. or  for unlimited online access.