Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Kevin Bullis

A View from Kevin Bullis

Can We Really Run the World on 100 Percent Renewables?

Some studies suggest we can easily drop nuclear and fossil fuels, but they raise serious questions.

  • March 13, 2013

Every once in a while someone will publish a roadmap for running the world (or a state) on 100 percent renewable energy by some date, say 2030 or 2050. The latest considers what it would take to run New York State with sources such as wind and solar. The resulting headlines look great, and a lot of people walk away with the general impression that, if we wanted to, we could easily drop fossil fuels and nuclear power.

But delve into these roadmaps, and you’ll often find jaw-dropping numbers of solar panels and wind turbines, radical changes to existing infrastructure, and amazing assumptions about our ability to cut energy use that make switching to renewable energy seem more daunting.

This post isn’t the place for a detailed analysis of these reports, although that should follow in a future story. But for now, it’s worth pointing out that in evaluating these sorts of studies, it seems like we should ask a few questions.

First, can we really reduce energy consumption as much as these studies often claim? In order to produce enough energy from wind and solar and other renewable resources, these studies typically posit a scenario in which we will actually use less energy in the future than we do now because of improvements in efficiency. The New York State one estimates a 37 percent drop in energy demand. Is this really possible, not just in theory (we certainly waste a lot of energy) but also in practice? The New York study proposes using district heating as a way of storing energy from wind turbines, but installing the underground steam pipes and other equipment needed for such systems is a costly and likely very slow process—especially if the system needs to be retrofitted to existing cities. If we look at the situation worldwide, reducing energy demand will be particularly difficult as poor countries try to bring basic energy services to their people, which could actually double energy demand.

The other big question is, how much will the switch to renewables cost compared to the cost of continuing to use fossil fuels? When talking about the cost of switching, studies sometimes include estimates of externalities associated with fossil fuels, which is important and necessary. The New York State study estimates that air pollution plus the impacts of climate change actually double the cost of power from coal. Yet no one really knows how much damage will come from global warming, so the estimates could be inaccurate. If we do switch aggressively to renewable energy, presumably the cost for fossil fuels will drop. By how much? What does that do to our calculations about the true cost of fossil fuels, including externalities?

If the policy that drives the switch to renewables depends on adding a price for carbon emissions, falling fossil fuel prices could require an ever higher carbon price to prompt a switch. If our policy is a mandate that limits the use of fossil fuels, at what point does prohibiting fossil fuels hurt poor people who could benefit from a cheap source of energy more than they’re hurt by externalities?

Another key question about costs has to do with financing. When we’re talking about renewable energy, we’re talking essentially about paying for all of the power we’ll use over the lifetime of a solar panel upfront. The cost savings from efficiency measures also require an upfront investment. The cost and availability of financing will have a big impact on the cost per kilowatt hour of renewable energy, or whether battery-powered vehicles pay for themselves in fuel savings.

And a big unknown is just how much it will cost to integrate huge amounts of intermittent renewable sources of energy to create reliable power. The New York study gestures to this problem, but the methods proposed are untested on a large scale, and the challenge will vary considerably depend on renewable resources in a given region. In some parts of the world, doldrums set in for entire seasons, making wind power a terrible option.

I suspect the answers to these questions will suggest that switching to renewables—especially if low-carbon nuclear power is left out of the mix—is more difficult than it might seem at first, but I don’t know for sure. It’s worth a close look.

Cut off? Read unlimited articles today.

Become an Insider
Already an Insider? Log in.
More from Sustainable Energy

Can we sustainably provide food, water, and energy to a growing population during a climate crisis?

Want more award-winning journalism? Subscribe to Insider Plus.
  • Insider Plus {! insider.prices.plus !}*

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    Print + Digital Magazine (6 bi-monthly issues)

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

    Technology Review PDF magazine archive, including articles, images, and covers dating back to 1899

    10% Discount to MIT Technology Review events and MIT Press

    Ad-free website experience

/3
You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.