Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

A Battery That Stretches to Three Times Its Size

Stretchable batteries that can be recharged wirelessly offer a power source for wearable electronics and health monitors.

Flexible electronics will enable new kinds of wearable and implantable devices.

Flexible, stretchable electronic devices will help monitor athletes on the field, take medical monitoring away from the hospital bedside, and make portable electronics more comfortable—perhaps even wearable. But to do anything at all, they need a power source. Now researchers have demonstrated a rechargeable lithium-ion battery that can be stretched by as much as 300 percent.

image of a stretchable battery
Stretchy power: This battery, pulled to 300 percent its original size, is powering an LED. The battery is made up of an array of lithium-ion cells (the shiny circles) on a silicone sheet.

Since 2011, researchers led by John Rogers, a materials scientist at the University of Illinois at Urbana-Champaign, have demonstrated stretchable versions of just about every electronic component—circuits, sensors, electrodes, light-emitting diode arrays, and more. Rogers’s goal, in his lab and at his startup company, MC10 of Cambridge, Massachusetts, is to make high-performance, comfortable, wearable health monitors. These electronics devices might go on clothing, attach directly to the skin in the form of a temporary tattoo, or even fit inside the body, for example on the surface of the beating heart. For all such applications, stretchiness is vital.

The challenge is that the best performing electronic devices, including silicon transistors, aren’t stretchable. The Illinois researchers have overcome this problem for some components by making them very thin and integrating them into large, widely spaced arrays built on stretchable substrates, such as thin sheets of silicone.

However, this approach won’t work for a battery, says Rogers’s collaborator Yonggang Huang, a mechanical engineer at Northwestern University in Evanston, Illinois. The active materials in a battery have to be densely packed, or the battery will store very little energy in a given volume, and it won’t last long between charges.

The solution devised by Rogers and Huang was to make a dense array of lithium-ion battery cells on a stretchable material, and wire them together with compact, yet highly extensible wires. These connections take up a very small area of the array, leaving more room for energy-storing materials. But they’re packed into dense serpentine squiggles that buckle, then unravel as the battery is stretched. Huang used mathematical modeling to design the packed-wire geometry. “We wanted to fill that space with as much wire as possible,” he says.

As the sheet of battery cells is stretched to as much as 300 percent of its original area, the batteries themselves remain islands of mechanical stability, while the interconnects take the strain. “That’s a pretty impressive level of stretchability,” says Yi Cui, a materials scientist at Stanford University who is also developing stretchable energy storage devices. Previous stretchy batteries can only go to about 150 percent.

The Illinois group demonstrated that the battery could operate an LED even while being stretched. And they demonstrated that the battery could be charged without the need to plug it into the wall—an inconvenience for electronics worn on the clothes, and an impossibility for implanted electronics—by pairing it with a similarly stretchy sheet of resonators that can be used to wirelessly recharge the battery. The Illinois group also showed that the battery can take the strain when wrapped around a person’s elbow and flexed. This work is described in the online journal Nature Communications.

Daniel Steingart, a mechanical engineer at Princeton University who was not involved with the work but who is also developing stretchable power sources, says the batteries put out enough power to run sensors and processors. However, he says, the batteries will have to be even more densely packed to be truly useful.

Huang says his group is now working on improving the batteries’ performance. So far, they’ve only demonstrated 20 charge cycles—that means they don’t know for certain whether the batteries will last after they’ve been discharged and recharged more than 20 times. He’s also continuing to model the geometry of the wires in the hopes of packing the batteries more densely.

Become an MIT Technology Review Insider for in-depth analysis and unparalleled perspective.

Subscribe today
Want more award-winning journalism? Subscribe to Insider Plus.
  • Insider Plus {! insider.prices.plus !}*

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    Print + Digital Magazine (6 bi-monthly issues)

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

    Technology Review PDF magazine archive, including articles, images, and covers dating back to 1899

    10% Discount to MIT Technology Review events and MIT Press

    Ad-free website experience

/3
You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.