Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Emerging Technology from the arXiv

A View from Emerging Technology from the arXiv

If A Primordial Black Hole Hits The Sun...

…we should be able to see the oscillations generated by the collision, say astrophysicists

  • June 3, 2011

Astronomers have so far discovered two types of black hole: supermassive ones at the centre of galaxies and stellar-mass black holes, which form when giant stars die.

But there’s no reason why black holes of any size cannot form. In fact, many astronomers think that the variations in density in the early universe would have led to the natural formation of relatively small black holes.

The smallest of these ought to have evaporated by now. But black holes with the mass of an asteroid, say, ought to be floating round as I write. They may even make up the mysterious dark matter that fills the universe. The question is how to find them.

Various theorists have suggested that we could spot primordial black holes by phenomena such as lensing effects as they pass in front of distant stars or by the gamma ray bursts they create as they flicker out of existence. But none of these approaches has produced definitive results.

Now Michael Kesden at New York University and Shravan Hanasoge at Princeton University in New Jersey say that the effect of a primordial black hole hitting the Sun ought to be easily observable.

Such an event wouldn’t be as catastrophic as it sounds. The likelihood is that a primordial black hole with mass of an asteroid or comet (about 10^21 g) would pass straight through the Sun, generating a small puff of X-rays in the process. Such a burst would be less even than the background rate of X-rays, so it would be impossible for astronomers to see.

Instead, Kesden and Hanasoge say that the collision would generate supersonic turbulence that would set the Sun ringing like a bell. Today, they calculate what these oscillations would look like.

Their conclusion is that the oscillations ought to be visible with today’s solar observatories as a kind of solar hiccup. So we might have seen them already.

That should generate a scramble. You can bet that solar scientists will be pouring over their data right now to see if they’ve missed the telltale signs of a black hole collision. If they find any, we should hear soon.

However, primordial black holes are likely to be rare, which means that collisions with Sun will be few and far between. So a more promising approach, say Kesden and Hanasoge, is to look at the way other stars oscillate.

And as luck would have it, astroseismology is an infant science that is rapidly maturing thanks to the observations being made by spacecraft such as CoRot and Kepler which can see other stars oscillating. One way or another, we’re going to learn a lot more about the way stars vibrate.

Ref: arxiv.org/abs/1106.0011: Transient Solar Oscillations Driven By Primordial Black Holes

Cut off? Read unlimited articles today.

Become an Insider
Already an Insider? Log in.

Uh oh–you've read all of your free articles for this month.

Insider Premium
$179.95/yr US PRICE

Want more award-winning journalism? Subscribe to Insider Basic.
  • Insider Basic {! insider.prices.basic !}*

    {! insider.display.menuOptionsLabel !}

    Six issues of our award winning print magazine, unlimited online access plus The Download with the top tech stories delivered daily to your inbox.

    See details+

    What's Included

    Unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Bimonthly print magazine (6 issues per year)

/
You've read all of your free articles this month. This is your last free article this month. You've read of free articles this month. or  for unlimited online access.