Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Christopher Mims

A View from Christopher Mims

'Skin Printer' Could Help Heal Battlefield Wounds

Using an inkjet printer and cartridges full of living tissue, researchers demonstrate rapid healing in animals.

  • October 29, 2010

In a recent presentation at the American College of Surgeons Clinical Congress, researchers from the Wake Forest Institute for Regenerative Medicine showed off the results of a unique experiment involving a printer that uses living cells as its “ink.”

The skin bio-printer can move along an X and Y axis (A) and sports a print head with cartridges of living cells (B)

The system, which lays down cells with the same fluid-based inkjet technology used in many printers, could print large swathes of living tissue directly onto the injuries of soldiers wounded on the battlefield. Covering burns and related wounds is of critical importance because, the scientists note, “any loss of full-thickness skin of more than 4 cm in diameter will not heal by itself.”

A dual print head keeps the skin fluid until it hits the treatment area

Tests on mice revealed advanced healing by both the second and third week of recovery, with complete closure and formation of scar tissue by week three in treated (but not untreated) subjects. The printer has two heads, one of which ejects skin cells mixed with fibrinogen (a blood coagulant) and type I collagen (the main component of the connective tissue in scars). The other head ejects thrombin (another coagulant).

Like the components of quick-setting resins which must be kept separate until mixing causes a chemical reaction that hardens the resin, the products of the two print heads mix to immediately form fibrin, yet a third protein involved in the clotting of blood. The whole confection is topped by a layer of keratinocytes (i.e. skin cells), which are also printed.

Future iterations of the research will be conducted on pigs (which have skin that more closely resembles that of humans), and it’s not clear when, if ever, such a device might appear in a field hospital in Afghanistan, not to mention your local burn center.

Treated (top) versus untreated (bottom) skin

Full citation: In Situ Bioprinting of the Skin for Burns

Kyle W. Binder1, Weixin Zhao1, Gil Young Park2, Tao Xu1, Dennis Dice1, Anthony Atala1, James J. Yoo1

1 Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina, United States of America 2 Imperial College London, Department of Bioengineering, London, United Kingdom

Follow Mims on Twitter or contact him via email.

Get stories like this before anyone else with First Look.

Subscribe today
Already a Premium subscriber? Log in.

Uh oh–you've read all of your free articles for this month.

Insider Premium
$179.95/yr US PRICE

Want more award-winning journalism? Subscribe to Insider Basic.
  • Insider Basic {! insider.prices.basic !}*

    {! insider.display.menuOptionsLabel !}

    Six issues of our award winning print magazine, unlimited online access plus The Download with the top tech stories delivered daily to your inbox.

    See details+

    What's Included

    Unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Bimonthly print magazine (6 issues per year)

/
You've read all of your free articles this month. This is your last free article this month. You've read of free articles this month. or  for unlimited online access.