Skip to Content

Tiny Needles to Fight Cancer

Researchers inject quantum dots into the skin using plastic microneedles, potentially providing a way to diagnose and treat diseases.
September 1, 2010

Using a novel laser-based technique, researchers at North Carolina State University have made arrays of tiny, hollow plastic needles that they used to insert fluorescent quantum-dot dyes into skin. Biomedical engineering professor Roger Narayan, who leads the research, says the microneedles and quantum dots, which have been tested on pigs, could be used to diagnose and treat skin cancer and other chronic diseases.

Tiny thorns: A hollow polymer microneedles, seen here under a scanning electron microscope, are about 700 nanometers long. Doctors could use the needles to insert quantum dot dyes into the skin for disease diagnostics and therapy.

Researchers have recently developed ways to use quantum dots–nanocrystals of semiconductors such as cadmium selenide and zinc sulfide that glow in different colors–to image tumors and deliver drugs into cells. The dots are much brighter and more stable inside the body than traditional organic dyes. “When combined with microneedles, [quantum dots] can offer a powerful method to probe the skin and other tissues,” says Mark Prausnitz, a chemical and biomolecular engineering professor at the Georgia Institute of Technology. Prausnitz has made biodegradable polymer microneedles that dissolve into the skin in a few minutes.

Microneedle technology has been under development for 15 years as a painless way to administer drugs and for diabetics to monitor their blood sugar levels. The needles, typically made of silicon or various polymers, are typically several hundred micrometers long and wide–too small to cause pain when injected into the skin. They can be solid, in which case they encapsulate or are coated with drugs, or they can be hollow for injecting a substance into the skin.

Silicon microneedles are typically made with the same lithography techniques used to make computer chips. But the new laser technique makes it easier to control the shape and size of the polymer needles, Narayan says. He adds that the technique is simple, requires just one step, and is suitable for low-cost mass production in a conventional manufacturing environment. “No clean room facilities or other dedicated environments are necessary,” he says.

The researchers make the thorn-shaped needles by shining a femtosecond laser on a light-sensitive liquid resin that polymerizes under the light. The polymer resins, used to make hearing aids and other medical devices, are cheap and widely available.

Narayan and his colleagues are focusing on the medical applications of the microneedles. Together with researchers at the University of North Carolina Chapel Hill medical center and Mercer University, they are evaluating the use of the devices in animals. “We’re trying to understand how much time transpires between delivery of dose and observation of physiological response,” Narayan says.

Keep Reading

Most Popular

Scientists are finding signals of long covid in blood. They could lead to new treatments.

Faults in a certain part of the immune system might be at the root of some long covid cases, new research suggests.

Large language models can do jaw-dropping things. But nobody knows exactly why.

And that's a problem. Figuring it out is one of the biggest scientific puzzles of our time and a crucial step towards controlling more powerful future models.

OpenAI teases an amazing new generative video model called Sora

The firm is sharing Sora with a small group of safety testers but the rest of us will have to wait to learn more.

Google’s Gemini is now in everything. Here’s how you can try it out.

Gmail, Docs, and more will now come with Gemini baked in. But Europeans will have to wait before they can download the app.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.