Intelligent Machines

Startup Aims for Perfect Pixels

A new display offers color video and a reflective e-reader mode.

The race is on to build the perfect e-reader and tablet display. It needs to be easy on the eyes for e-reading, bright and beautiful for playing video, and efficient enough to lasts for days on a single battery charge.

MEMS the word: The Pixtronix display, seen here attached to a circuit board, uses MEMS shutters and a colored backlight to produce color video.

An Andover, MA, startup called Pixtronix hopes it has the right combination of technology and business plan to bring such screen to market. Like a liquid crystal display, Pixtronix’s display uses a backlight, but unlike most LCDs it also reflects ambient light, allowing for an easier-to-read monochrome e-reader mode. The pixels in the display are made of tiny silicon shutters: micro-electromechanical systems (MEMS) that open and close to emit red, blue, and green light in rapid sequence, creating the illusion of a range of colors.

Unlike most other display technologies, there are no filters, polarizing films, or liquid crystals for light to pass through in the Pixtronix system. This means the backlight needs to be much less intense, using a quarter of the power that standard LCDs use,says Nesbitt Hagood, founder, president and CTO of Pixtronix. In Pixtronix display, color is produced by the flickering colored backlight in combination with shutters opening and closing. When the shutters are open, ambient light reflects within the MEMS structure to amplify the color, says Hagood. Turn off the backlight, and an open shutter produces a whitish-gray pixel. When the shutter is closed, the pixel is black.

A Pixtronix display differs slightly from another up-and-coming MEMS display technology, called mirasol, from Qualcomm. In this display, pixels are made of MEMS light chambers with movable, reflective surfaces that cause light waves to interfere with each other. Color is determined by the distance between the reflective surfaces. Mirasol is an extremely low-power display because it doesn’t use a backlight at all, but its video quality is currently somewhat grainy. Another display startup, called Unipixel, has developed shutter technology somewhat similar to that of Pixtronix. A backlight and thin polymer film shutters produce both color images and video. In May, the technology licensing firm Rambus acquired a portion of Unipixel’s intellectual property.

Pixtronix hopes to license its technology to LCD manufacturers, which could adapt the equipment used to make LCDs to produce the screens MEMS shutters. “Billions and billions of dollars have been spent developing relatively mature [LCD] manufacturing facilities to get nice looking, high-yield displays,” says Hagood. “If you’re going to have a competitive product in the marketplace, you have to leverage that investment.”

Pixtronix isn’t the only company trying to do this. Pixel Qi, which spun out of the One Laptop Per Child Project, is also building displays in LCD facilities. But whereas Pixel Qi has redesigned the components of LCDs–layers of optical polarizers, filters, and liquid crystals–to produce a display with both backlit-color and e-reader modes, Pixtronix has done away with all of the components of an LCD except for the backlight and the layer of transistors on glass that control the pixels.

Paul Semenza, an analyst for DisplaySearch, a technology research firm, says Pixtronix’s approach is relatively simple compared to LCD technology. But he notes that it is tough for novel technologies to break into the display market to break into. “LCD makers have a track record of beating back innovations that were thought to be ‘better’ than LCD,” he says. “It’s a little hard to say yet whether it will succeed.”

Another hurdle to adoption, says Semenza is something called “color breakup,” in which the red, blue, and green colors appear to separate out, instead of blending together to produce a single color. Some people are more sensitive to this effect, which can occur with MEMS displays.

According to Hagood, Pixtronix has developed an algorithm that determines how fast to sequence pixel colors to minimize color breakup. “So far, people are pretty happy,” he says. “Image quality isn’t going to be the challenge.”

Hagood adds that the biggest challenge will be the same as it was for LCD makers in the early days of that technology: getting high yields with low-cost manufacturing. He expects the first displays with Pixtronix technology to be in products by late 2011. Then users can judge whether the perfect tablet screen has truly arrived.

Become an MIT Technology Review Insider for in-depth analysis and unparalleled perspective.
Subscribe today

Uh oh–you've read all five of your free articles for this month.

Insider Premium

$179.95/yr US PRICE

More from Intelligent Machines

Artificial intelligence and robots are transforming how we work and live.

Want more award-winning journalism? Subscribe and become an Insider.

  • Insider Premium {! insider.prices.premium !}*

    {! insider.display.menuOptionsLabel !}

    Our award winning magazine, unlimited access to our story archive, special discounts to MIT Technology Review Events, and exclusive content.

    See details+

    What's Included

    Bimonthly home delivery and unlimited 24/7 access to MIT Technology Review’s website.

    The Download. Our daily newsletter of what's important in technology and innovation.

    Access to the Magazine archive. Over 24,000 articles going back to 1899 at your fingertips.

    Special Discounts to select partner offerings

    Discount to MIT Technology Review events

    Ad-free web experience

    First Look. Exclusive early access to stories.

    Insider Conversations. Join in and ask questions as our editors talk to innovators from around the world.

  • Insider Plus {! insider.prices.plus !}* Best Value

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus ad-free web experience, select discounts to partner offerings and MIT Technology Review events

    See details+

    What's Included

    Bimonthly home delivery and unlimited 24/7 access to MIT Technology Review’s website.

    The Download. Our daily newsletter of what's important in technology and innovation.

    Access to the Magazine archive. Over 24,000 articles going back to 1899 at your fingertips.

    Special Discounts to select partner offerings

    Discount to MIT Technology Review events

    Ad-free web experience

  • Insider Basic {! insider.prices.basic !}*

    {! insider.display.menuOptionsLabel !}

    Six issues of our award winning magazine and daily delivery of The Download, our newsletter of what’s important in technology and innovation.

    See details+

    What's Included

    Bimonthly home delivery and unlimited 24/7 access to MIT Technology Review’s website.

    The Download. Our daily newsletter of what's important in technology and innovation.

You've read of free articles this month.